

 Phoenix LiveView

 v1.0.0-rc.1

 Table of contents

 	Changelog

 	Introduction

 	Welcome

 	Server-side features

 	Assigns and HEEx templates

 	Deployments

 	Error and exception handling

 	Live layouts

 	Live navigation

 	Security considerations

 	Telemetry

 	Uploads

 	Gettext for internationalization

 	Client-side integration

 	Bindings

 	Form bindings

 	JavaScript interoperability

 	External uploads

 	Cheatsheets

 	phx- HTML attributes

 	

 	Modules

 	Phoenix.Component

 	Phoenix.LiveComponent

 	Phoenix.LiveView

 	Phoenix.LiveView.AsyncResult

 	Phoenix.LiveView.Controller

 	Phoenix.LiveView.JS

 	Phoenix.LiveView.Router

 	Phoenix.LiveViewTest

 	Configuration

 	Phoenix.LiveView.HTMLFormatter

 	Phoenix.LiveView.Logger

 	Phoenix.LiveView.Socket

 	Testing structures

 	Phoenix.LiveViewTest.Element

 	Phoenix.LiveViewTest.Upload

 	Phoenix.LiveViewTest.View

 	Upload structures

 	Phoenix.LiveView.UploadConfig

 	Phoenix.LiveView.UploadEntry

 	Phoenix.LiveView.UploadWriter

 	Plugin API

 	Phoenix.LiveComponent.CID

 	Phoenix.LiveView.Component

 	Phoenix.LiveView.Comprehension

 	Phoenix.LiveView.Engine

 	Phoenix.LiveView.HTMLEngine

 	Phoenix.LiveView.Rendered

 	Phoenix.LiveView.TagEngine

Changelog

 Backwards incompatible changes for 1.0

LiveView 1.0 removes the client-based phx-feedback-for annotation for showing and hiding input feedback, such as validation errors. This has been replaced by Phoenix.Component.used_input?/2, which handles showing and hiding feedback using standard server rendering.
A backwards-compatible shim can be used to maintain phx-feedback-for in your existing applications:
	Save the phx_feedback_dom.js shim to your local assets/js/phx_feedback_dom.js.
	Import it into your assets/js/app.js.
	Add a new dom option to your LiveSocket constructor, or wrap the existing value:

import {Socket} from "phoenix";
import {LiveSocket} from "phoenix_live_view"
import phxFeedbackDom from "./phx_feedback_dom"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content");
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 dom: phxFeedbackDom({})
})

 Migrating from phx-feedback-for

While we provide a shim for existing applications relying on phx-feedback-for,
you might want to migrate to the new approach.
The following guides you through the necessary changes assuming a project generated
with a recent (Phoenix 1.7), but pre LiveView 1.0 version of the phx generators.
For more general use cases, please also have a look at the documentation for used_input?/1.
First, ensure that you are using the latest versions of :phoenix_ecto and :phoenix_html. At the time of writing:
{:phoenix_ecto, "~> 4.5"},
{:phoenix_html, "~> 4.1"},
Core components
	Adjust the core components to omit the phx-feedback-for attribute and the phx-no-feedback classes.
This shows one example for the textarea input, but there are more cases that need to be adjusted accordingly:

 def input(%{type: "textarea"} = assigns) do
 ~H"""
- <div phx-feedback-for={@name}>
+ <div>
 <.label for={@id}><%%= @label %></.label>
 <textarea
 id={@id}
 name={@name}
 class={[
- "mt-2 block w-full rounded-lg text-zinc-900 focus:ring-0 sm:text-sm sm:leading-6",
- "min-h-[6rem] phx-no-feedback:border-zinc-300 phx-no-feedback:focus:border-zinc-400",
+ "mt-2 block w-full rounded-lg text-zinc-900 focus:ring-0 sm:text-sm sm:leading-6 min-h-[6rem]",
 @errors == [] && "border-zinc-300 focus:border-zinc-400",
 @errors != [] && "border-rose-400 focus:border-rose-400"
]}
	Filter the errors in the initial function for Phoenix.HTML.FormFields:

 def input(%{field: %Phoenix.HTML.FormField{} = field} = assigns) do
+ errors = if Phoenix.Component.used_input?(field), do: field.errors, else: []

 assigns
 |> assign(field: nil, id: assigns.id || field.id)
- |> assign(:errors, Enum.map(field.errors, &translate_error(&1)))
+ |> assign(:errors, Enum.map(errors, &translate_error(&1)))
 |> assign_new(:name, fn -> if assigns.multiple, do: field.name <> "[]", else: field.name end)
 |> assign_new(:value, fn -> field.value end)
 |> input()
 end
	You can remove the phx-no-feedback tailwind variant helper from your tailwind.config.js:

 //
- plugin(({addVariant}) => addVariant("phx-no-feedback", [".phx-no-feedback&", ".phx-no-feedback &"])),
 plugin(({addVariant}) => addVariant("phx-click-loading", [".phx-click-loading&", ".phx-click-loading &"])),
phx.gen.auth
The settings page generated by phx.gen.auth creates a form to change the user's email as well as the password.
Because of the way the current password is checked in previous variants of the code, the error message for an invalid
password is not visible when migrating to used_input?. To make this work, two changes need to be made to the
generated user module:
	add a new virtual field :current_password to the schema:

 field :hashed_password, :string, redact: true
+ field :current_password, :string, virtual: true, redact: true
	cast the current_password field in the validate_current_password function:

 def validate_current_password(changeset, password) do
+ changeset = cast(changeset, %{current_password: password}, [:current_password])
+
 if valid_password?(changeset.data, password) do

 1.0.0-rc.1 (2024-06-18)

 Enhancements

	Warn when rendering an input named "id"
	Allow form recovery to work on forms in nested LiveViews
	Allow using form/3 with inputs outside the form
	Allow setting page title to an empty string
	Fix warnings on Elixir 1.17

 Bug fixes

	Fix used input tracking on checkboxes and hidden inputs
	Fix phx-debounce=blur incorrectly sending change event to the next page in some cirumstances
	Fix race condition when destroying Live Components while transitions are still running
	Fix page reload when disconnecting LiveSocket if using Bandit
	Fix formatter changing <% to <%= when it shouldn't

 Deprecations

	Deprecate live_flash in favor of Phoenix.Flash.get
	Deprecate push_redirect in favor of push_navigate

 Removal of previously deprecated functionality

	phx-capture-click has been removed (deprecated in 0.17.0)

 1.0.0-rc.0 🚀 (2024-05-08)

 Backwards incompatible changes

	Remove phx-feedback-for in favor of Phoenix.Component.used_input?. See the changelog for a backwards compatible phx-feedback-for shim to add to existing applications.

 Removal of previously deprecated functionality

	live_component/2 and live_component/3 helpers (not the function component) have been removed

 Bug fixes

	Fix attributes of existing stream items not being updated on reset
	Fix nested LiveView within streams becoming empty when reset
	Fix phx-mounted firing twice, first on dead render, then on live render, leading to errors when a LiveComponent has not yet mounted
	Fix JS.toggle_class error when used with a transition
	Fix updated form values not being sent in some circumstances when phx-trigger-action is used
	Fix phx-viewport bindings when html or body element has overflow property

 Enhancements

	Warn on mismatched client and server versions

 0.20.14 (2024-03-13)

 Bug fixes

	Fix warning caused by optional Floki dependency

 0.20.13 (2024-03-12)

 Bug fixes

	Fix LiveComponent rendering bug causing elements to disappear when a LiveComponent child is removed and added back by the server

 Enhancements

	Warn when accessing the socket in a function passed to assign_async / start_async

 0.20.12 (2024-03-04)

 Enhancements

	Phoenix LiveView requires Elixir v1.13+

 Bug fixes

	Do not send Telemetry metadata as Logger event, this avoids the metadata from being accidentally copied to other processes
	Ensure LiveViewTest does not crash on IDs with foreign characters, such as question marks
	Fix a bug where LiveViewTest could not perform a connected mount on a page with certain streams

 0.20.11 (2024-02-29)

 Bug fixes

	Fix auto uploads with invalid entries incorrectly proceeding with a form submit instead of halting, causing entries in progress errors
	Fix auto upload entries failing to be uploaded on submit after moving into a valid state, such as falling within max_entries
	Fix TagEngine clause warning

 0.20.10 (2024-02-28)

 Bug fixes

	Fix cancelled uploads being re-added
	Fix form submits for previously submitted invalid upload entries causing errors instead of preflighted new upload entries
	Fix HTML formatter not respecting phx-no-format for script tags

 Enhancements

	Add additional HEEx debug annotations for the caller locations of function component invocations
	Abandon form recovery if recovery event fails

 0.20.9 (2024-02-19)

 Bug fixes

	Fix error in LiveViewTest when a phx-update="ignore" container is added dynamically to the DOM

 0.20.8 (2024-02-19)

 Bug fixes

	Fix live uploader issue when a form contained more than one <.live_file_input>
	Fix phx-remove on re-added stream items trigging the remove when it should not
	Fix js error attempting to re-order an element that does not exist in the DOM

 Enhancements

	Align LiveViewTest with JavaScript DOM patching behavior for phx-update="ignore" when updating attributes in LiveViewTest

 0.20.7 (2024-02-15)

 Bug fixes

	Fix phx-skip containers leaking into DOM on first patch in some cases (#3117)
	Fix phx-feedback-for failing to be properly updated in some cases (#3122)

 0.20.6 (2024-02-14)

 Bug fixes

	Fix stream items being excluded in LiveViewTest
	Fix stream items failing to properly update nested streams or LiveComponents
	Fix debounce/blur regression causing unexpeted events to be sent

 0.20.5 (2024-02-08)

 Deprecations

	Deprecate phx-feedback-group introduced in the previous release, the goal is to move feedback handling into Elixir and out of the DOM

 Bug fixes

	Fix blur event on phx-debounce being dispatched incorrectly
	Fix open_browser not working on WSL for project under UNIX file systems
	Match browser stream insert ordering behavior in LiveViewTest
	Fix phx-click-away not working when element is partially hidden
	Fix phx-feedback-for classes not being applied in some cases
	Fix form submitter failing to be sent as key/value pair in some cases
	Fix null form reference causing errors on some DOM patches

 0.20.4 (2024-02-01)

 Bug fixes

	Fix phx-remove on sticky LiveViews
	Fix phx-disabled-with not restoring button disabled state on empty diff acknowledgement
	Fix stream reset not ordering items correctly
	Send {:shutdown, :cancel} to handle_async/3 on cancel_async
	Prevent events from child LiveViews from bubbling up to root LiveView when child is not mounted yet
	Fix phx-mounted being called twice for stream items
	Never move existing stream items if they already exist (use stream_delete and then stream_insert instead)
	Fix live component rendering breaking when the server adds a component back that was pruned by the client (#3026)
	Allow redirect from upload progress callback
	Fix nested components getting skipped when resetting a stream
	Fix nested components getting skipped in LiveComponents
	Fix stream limits not being applied correctly when bulk inserting
	Fix click-away being called incorrectly on form submits
	Fix inconsistencies between LiveViewTest and browser stream implementations
	Fix phx-feedback-for being reapplied when there are multiple inputs with the same name
	Ensure phx-update="ignore" behaves consistently: updates from the server to the element's content and attributes are ignored, except for data attributes

 Enhancements

	Add JS.toggle_class
	Add JS.toggle_attribute
	Force update select options when the options changed from the server while a select has focus
	Introduce phx-feedback-group for handling feedback for composite input groups
	Add validate_attrs to slots
	Support phx-viewport bindings in scrollable containers
	Perform client redirect when trying to live nav from dead client to avoid extra round trip
	Allow regular buttons with name/value attributes to send form events and adjusted dynamic form documentation to reflect this
	Allow form attribute on live_file_input

 Removal of previously deprecated functionality

	live_component/2 and live_component/3 helpers (not the function component) have been removed

 0.20.3 (2024-01-02)

 Bug fixes

	Fix phx-viewport bindings failing to fire after navigation
	Preserve order of appended items in stream in LiveViewTest
	Fix order of items on client when resetting a stream to existing set of items

 Enhancements

	Support JS.push from dead views

 0.20.2 (2023-12-18)

 Bug fixes

	Fix JavaScript error when submitting a form that has in progress uploads
	Fix JS command :target failing to work when used as phx-submit or phx-change with a selector-based target
	Fix JS.focus() failing to focus negative tabindex
	Fix LiveViewTest failing to remove items after stream reset
	Fix phx-window-blur and phx-window-focus events not firing
	Fix SVG anchor links throwing errors when clicked

 Enhancements

	Speed up DOM patching performance 3-30x 🔥
	Support handle_async lifecycle callback
	Extend visibility checks for phx-click-away to better handle whether an element is visible in the viewport or not
	Allow JS.patch and JS.navigate to be tested with render_click
	Support :supervisor option to assign_async and start_async

 Deprecations

	Deprecate phx-update="append" and phx-update="prepend" in favor of phx-update="stream"

 0.20.1 (2023-10-09)

 Bug fixes

	Fix error with live uploads auto_upload: true when a file fails to preflight
	Fix error with live uploads where an early exit can cause a map key error
	Fix match error on live navigation when reconnecting from client

 Enhancements

	Support new meta() method on File/Blob sublcasses on JavaScript client to allow the client to pass arbitrary metadata when using upload/uploadTo from hook. The %UploadEntry{}'s new client_meta field is populated from this information.
	Improve void tagging and error messages

 0.20.0 (2023-09-22)

 Deprecations

	Deprecate the ~L sigil in favor of ~H
	Deprecate preload/1 in LiveComponent in favor of update_many/1
	Deprecate live_component/2-3 in favor of <.live_component />
	Deprecate live_patch in favor of <.link patch={...} />
	Deprecate live_redirect in favor of <.link navigate={...} />
	Deprecate live_title_tag in favor of <.live_title />

 Backwards incompatible changes

	Remove previously deprecated render_block/2 in favor of render_slot/2
	Remove previously deprecated live_img_preview/2 in favor of <.live_img_preview />
	Remove previously deprecated live_file_input/2 in favor of <.live_file_input />

 Bug fixes

	Fix uploads with auto_upload: true failing to propagate errors when any individual entry is invalid
	Fix uploads with auto_upload: true failing to auto upload valid entries errors when any individual entry is invalid
	Fix error on form recovery with auto_upload: true
	Fix issue on form recovery where hidden inputs would be selected by mistake
	Fix form recovery when phx-change is a JS command
	Fix stream reset on nested live components with nested streams
	Fix window location resetting to null when using nested LiveView on connection error
	Fix anchors within contenteditable causing LiveSocket disconnects

 Enhancements

	Add heex debug annotations via config :phoenix_live_view, debug_heex_annotations: true, which provides special HTML comments that wrap around rendered components to help you identify where markup in your HTML document is rendered within your function component tree
	Add assign_async, start_async, <.async_result> and, AsyncResult for declaratively handling async operations in a LiveView or LiveComponent.
	Supporting passing @myself for Phoenix.LiveView.send_update/3
	Support change tracking on Access.get
	Allow overriding id of <.live_img_preview>

 0.19.5 (2023-07-19)

 Backwards incompatible changes

	The close/1 callback of Phoenix.LiveView.UploadWriter is now close/2 with the close reason passed as the second argument.
	The write_chunk callback of Phoenix.LiveView.UploadWriter must now return the updated
writer state when an error occurs. Instead of {:error, reason}, return {:error, reason, new_state}.

 Enhancements

	Pass close reason to Phoenix.LiveView.UploadWriter close.
	Dispatch phx:navigate window events when LiveView changes the history state

 Bug fixes

	Call Phoenix.LiveView.UploadWriter close callback when LiveView goes down or connection is lost
	Fix JS.patch to a Phoenix router scope with :host causing errors
	Fix immediate navigation after patch not updating URL
	Fix stream reset on nested streams inside live components causing nested stream children to be removed

 0.19.4 (2023-07-10)

 Enhancements

	Introduce Phoenix.LiveView.UploadWriter

 0.19.3 (2023-06-21)

 Bug fixes

	Fix push_event inside component update not being sent in some cases
	Bring back accidentally deprecated upload_errors/1

 0.19.2 (2023-06-12)

 Bug fixes

	Fix issue when <input name="value" /> is used

 0.19.1 (2023-06-06)

 Enhancements

	Allow accept attribute on <.live_file_input> to override default values

 Bug fixes

	Fix issue causing anchor clicks to disconnect LV when they were already handled via preventDefault() by other scripts

 0.19.0 (2023-05-29)

 Backwards incompatible changes

	Drop support for passing an id to the phx-feedback-for attribute. An input name must be passed instead.
	Remove previously deprecated let attribute. Use :let instead
	Remove previously deprecated <%= live_img_preview(entry) %>. Use <.live_img_preview entry={entry} /> instead
	Remove previously deprecated <%= live_file_input(upload) %>. Use <.live_file_input upload={upload} /> instead
	Remove previously deprecated <%= live_component(Component) %>. Use <.live_component module={Component} id=\"hello\" /> instead
	Don't convert underscores to dashes automatically when rendering HTML attributes. Use dashes or underscores where appropriate instead.

 Enhancements

	Support stream resets with bulk insert operations
	Support ordered inputs within inputs_for, to pair with Ecto's new sort_param and drop_param casting
	Send form phx-value's on form events

 Deprecations

	Deprecate passing :dom_id to stream/4 in favor of stream_configure/3
	Deprecate render_block/2 in favor of render_slot/2
	Deprecate <%= live_img_preview(entry, opts) %>. Use <.live_img_preview entry={entry} {opts} />
	Deprecate <%= live_file_input(upload, opts) %>. Use <.live_file_input upload={upload} {opts} />
	Deprecate stateless LiveComponent in favor of function components or in favor of <.live_component id={...} /> (note the id is required)

 Bug fixes

	Fix LiveView disconnects when clicking a download link
	Fix stream deletes not being sent on nested for comprehensions
	Fix phx-disconnected bindings not firing on mount failures
	Support form recovery on forms with only hidden inputs

 0.18.18 (2023-03-16)

 Bug fixes

	Allow :live_action to be assigned in a component
	Only filter internal function component attributes in assigns_to_attributes
	Only include submitter with name

 Enhancements

	Add JS.exec command for executing commands defined on other element attributes

 0.18.17 (2023-03-09)

 Bug Fixes

	Fix callbacks like handle_info failing to be invoked in development after a code change with the Phoenix code reloader

 Enhancements

	Support submitter on form submit events.
	Avoid compile-time dependency for attr when referencing structs
	Validate reserved assigns. Attempting to assign :uploads, :streams, :live_action, :socket, :myself will now raise in LiveView and LiveComponent

 0.18.16 (2023-02-23)

 Enhancements

	Support streams in Live Components
	Optimize plug error translation when a Plug.Exception is raised over connected LiveView

 Bug Fixes

	Fix formatter issues when there are multiple HTML comments

 0.18.15 (2023-02-16)

 Bug Fixes

	Fix JS.transition applying incorrect classes

 Enhancements

	Reset phx-feedback-for errors on type="reset" inputs and buttons

 0.18.14 (2023-02-14)

 Bug Fixes

	Fix LiveViewTest failing to find main live view

 0.18.13 (2023-02-10)

 Enhancements

	Improve error message when failing to use Phoenix.Component

 0.18.12 (2023-02-10)

 Enhancements

	Introduce streams for efficiently handling large collections
	Allow replies from :handle_event lifecycle hooks
	Add <.inputs_for> component to Phoenix.Component
	Support replies on lifecycle :handle_event hooks

 Bug Fixes

	Fix change tracking when re-assigning a defaulted attribute to same default value
	Fix upload drag and drop failing to worka after using file select dialog
	Fix form recovery when form's first input is phx-change

 0.18.11 (2023-01-19)

 Bug Fixes

	Fix socket unloading connection for forms that have defaulted prevented

 0.18.10 (2023-01-18)

 Bug Fixes

	Fix svg tags with href incorrectly unloading socket on click
	Fix form submits with target="_blank" incorrectly unloading socket on submit

 0.18.9 (2023-01-17)

 Bug Fixes

	Fix regular form submits failing to be dispatched

 0.18.8 (2023-01-16)

 Enhancements

	Restore scroll position on back when previous navigation was live patch

 Bug Fixes

	Fix live layout not being applied until connected render

 0.18.7 (2023-01-13)

 Bug Fixes

	Fix live layout not being applied when passed to :live_session during disconnect render
	Fix external anchor clicks and links with hashes incorrectly unloading socket

 0.18.6 (2023-01-09)

 Bug Fixes

	Fix external anchor click unloading on external click

 0.18.5 (2023-01-09)

 Bug Fixes

	Fix external anchor click unloading socket

 0.18.4 (2023-01-05)

 Enhancements

	Support string upload name to support dynamically generated allow_upload's

 Bug Fixes

	Fix nested LiveView race condition on live patch causing nested child to skip updates in some cases
	Fix browser history showing incorrect title when using live navigation with @page_title
	Fix undefined _target param when using JS.push for form changes
	Fix phx-no-feedback missing from inputs added after a form submit
	Fix phx-disconnected events firing when navigating away or submitting external forms

 0.18.3 (2022-10-26)

 Enhancements

	Add embed_templates to Phoenix.Component for embedding template files as function components
	Raise on global slot attributes

 Bug Fixes

	Fix bug on slots when passing multiple slot entries with mix if/for syntax

 0.18.2 (2022-10-04)

 Bug Fixes

	Fix match error when defining :values before :default
	Allow tuples in external redirects
	Fix race condition on dispatching click away when enter is pressed
	Fix formatter breaking inline blocks when surrounded by text without whitespace

 Enhancements

	Add intersperse component for rendering a separator between an enumerable

 0.18.1 (2022-09-28)

 Bug Fixes

	Fix phx-loading class being applied to dead views
	Fix <.live_img_preview /> causing invalid attribute errors on uploads
	Do not fire phx events when element is disabled

 Enhancements

	Support :include option to extend global attributes on a case-by-case basis
	Warn when accessing a variable binding defined outside of ~H

 0.18.0 (2022-09-20)

LiveView v0.18 includes a major new feature in the form of declarative assigns with new attr
and slot APIs for specifying which attributes a function component supports, the type,
and default values. Attributes and slots are compile-time verified and emit warnings (requires Elixir v1.14.0+).
v0.18 includes a number of new function components which replace their EEx expression
counterparts <%= ... %>. For example, live_redirect, live_patch, and Phoenix.HTML's
link have been replaced by a unified Phoenix.Component.link/1 function component:
<.link href="https://myapp.com">my app</.link>
<.link navigate={@path}>remount</.link>
<.link patch={@path}>patch</.link>
Those new components live in the Phoenix.Component module. Phoenix.LiveView.Helpers
itself has been soft deprecated and all relevant functionality has been migrated.
You must import Phoenix.Component where you previously imported Phoenix.LiveView.Helpers
when upgrading. You may also need to import Phoenix.Component where you also imported Phoenix.LiveView and some of its functions have been moved to Phoenix.Component.
Additionally, the special let attribute on function components have been deprecated by
a :let usage.

 Deprecations

	live_redirect - deprecate in favor of new <.link navigate={..}> component of Phoenix.Component
	live_patch - deprecate in favor of new <.link patch={..}> component of Phoenix.Component
	push_redirect - deprecate in favor of new push_navigate function on Phoenix.LiveView

 Enhancements

	[Component] Add declarative assigns with compile-time verifications and warnings via attr/slot
	[Component] Add new attrs :let and :for, and :if with HTML tag, function component, and slot support. We still support let but the formatter will convert it to :let and soon it will be deprecated.
	[Component] Add dynamic_tag function component
	[Component] Add link function component
	[Component] Add focus_wrap function component to wrap focus around content like modals and dialogs for accessibility
	[Logger] Add new LiveView logger with telemetry instrumentation for lifecycle events
	[JS] Add new JS commands for focus, focus_first, push_focus, and pop_focus for accessibility
	[Socket] Support sharing Phoenix.LiveView.Socket with regular channels via use Phoenix.LiveView.Socket
	Add _live_referer connect param for handling push_navigate referal URL
	Add new phx-connected and phx-disconnected bindings for reacting to lifecycle changes
	Add dead view support for JS commands
	Add dead view support for hooks

 Bug fixes

	Fix external upload issue where listeners are not cleaned up when an external failure happens on the client
	Do not debounce phx-blur

 0.17.12 (2022-09-20)

 Enhancements

	Add support for upcoming Phoenix 1.7 flash interface

 0.17.11 (2022-07-11)

 Enhancements

	Add replaceTransport to LiveSocket

 Bug fixes

	Cancel debounced events from firing after a live navigation event
	Fix hash anchor failing to scroll to anchor element on live navigation
	Do not debounce phx-blur events

 0.17.10 (2022-05-25)

 Bug fixes

	[Formatter] Preserve single quote delimiter on attrs
	[Formatter] Do not format inline elements surrounded by texts without whitespaces
	[Formatter] Keep text and eex along when there isn't a whitespace
	[Formatter] Fix intentional line breaks after eex expressions
	[Formatter] Handle self close tags as inline
	[Formatter] Do not format inline elements without whitespaces among them
	[Formatter] Do not format when attr contenteditable is present

 Enhancements

	[Formatter] Introduce special attr phx-no-format to skip formatting

 0.17.9 (2022-04-07)

 Bug fixes

	Fix sticky LiveViews failing to be patched during live navigation
	Do not raise on dynamic phx-update value

 0.17.8 (2022-04-06)

 Enhancements

	Add HEEx formatter
	Support phx-change on individual inputs
	Dispatch MouseEvent on client
	Add :bubbles option to JS.dispatch to control event bubbling
	Expose underlying liveSocket instance on hooks
	Enable client debug by default on localhost

 Bug fixes

	Fix hook and sticky LiveView issues caused by back-to-back live redirects from mount
	Fix hook destroyed callback failing to be invoked for children of phx-remove in some cases
	Do not failsafe reload the page on push timeout if disconnected
	Do not bubble navigation click events to regular phx-click's
	No longer generate csrf_token for forms without action, reducing the payload during phx-change/phx-submit events

 0.17.7 (2022-02-07)

 Enhancements

	Optimize nested for comprehension diffs

 Bug fixes

	Fix error when live_redirect links are clicked when not connected in certain cases

 0.17.6 (2022-01-18)

 Enhancements

	Add JS.set_attribute and JS.remove_attribute
	Add sticky: true option to live_render to maintain a nested child on across live redirects
	Dispatch phx:show-start, phx:show-end, phx:hide-start and phx:hide-end on JS.show|hide|toggle
	Add get_connect_info/2 that also works on disconnected render
	Add LiveSocket constructor options for configuration failsafe behavior via new maxReloads, reloadJitterMin, reloadJitterMax, failsafeJitter options

 Bug fixes

	Show form errors after submit even when no changes occur on server
	Fix phx-disable-with failing to disable elements outside of forms
	Fix phx ref tracking leaving elements in awaiting state when targeting an external LiveView
	Fix diff on response failing to await for active transitions in certain cases
	Fix phx-click-away not respecting phx-target
	Fix "disconnect" broadcast failing to failsafe refresh the page
	Fix JS.push with :target failing to send to correct component in certain cases

 Deprecations

	Deprecate Phoenix.LiveView.get_connect_info/1 in favor of get_connect_info/2
	Deprecate Phoenix.LiveViewTest.put_connect_info/2 in favor of calling the relevant functions in Plug.Conn
	Deprecate returning "raw" values from upload callbacks on Phoenix.LiveView.consume_uploaded_entry/3 and Phoenix.LiveView.consume_uploaded_entries/3. The callback must return either {:ok, value} or {:postpone, value}. Returning any other value will emit a warning.

 0.17.5 (2021-11-02)

 Bug fixes

	Do not trigger phx-click-away if element is not visible
	Fix phx-remove failing to tear down nested live children

 0.17.4 (2021-11-01)

 Bug fixes

	Fix variable scoping issues causing various content block or duplication rendering bugs

 0.17.3 (2021-10-28)

 Enhancements

	Support 3-tuple for JS class transitions to support staged animations where a transition class is applied with a starting and ending class
	Allow JS commands to be executed on DOM nodes outside of the LiveView container

 Optimization

	Avoid duplicate statics inside comprehension. In previous versions, comprehensions were able to avoid duplication only in the content of their root. Now we recursively traverse all comprehension nodes and send the static only once for the whole comprehension. This should massively reduce the cost of sending comprehensions over the wire

 Bug fixes

	Fix HTML engine bug causing expressions to be duplicated or not rendered correctly
	Fix HTML engine bug causing slots to not be re-rendered when they should have
	Fix form recovery being sent to wrong target

 0.17.2 (2021-10-22)

 Bug fixes

	Fix HTML engine bug causing attribute expressions to be incorrectly evaluated in certain cases
	Fix show/hide/toggle custom display not being restored
	Fix default to target for JS.show|hide|dispatch
	Fix form input targeting

 0.17.1 (2021-10-21)

 Bug fixes

	Fix SVG element support for phx binding interactions

 0.17.0 (2021-10-21)

 Breaking Changes

on_mount changes
The hook API introduced in LiveView 0.16 has been improved based on feedback.
LiveView 0.17 removes the custom module-function callbacks for the
Phoenix.LiveView.on_mount/1 macro and the :on_mount option for
Phoenix.LiveView.Router.live_session/3 in favor of supporting a custom
argument. For clarity, the module function to be invoked during the mount
lifecycle stage will always be named on_mount/4.
For example, if you had invoked on_mount/1 like so:
on_mount MyAppWeb.MyHook
on_mount {MyAppWeb.MyHook, :assign_current_user}
and defined your callbacks as:
my_hook.ex

def mount(_params, _session, _socket) do
end

def assign_current_user(_params, _session, _socket) do
end
Change the callback to:
my_hook.ex

def on_mount(:default, _params, _session, _socket) do
end

def on_mount(:assign_current_user, _params, _session, _socket) do
end
When given only a module name, the first argument to on_mount/4 will be the
atom :default.
LEEx templates in stateful LiveComponents
Stateful LiveComponents (where an :id is given) must now return HEEx templates
(~H sigil or .heex extension). LEEx templates (~L sigil or .leex extension)
are no longer supported. This addresses bugs and allows stateful components
to be rendered more efficiently client-side.
phx-disconnected class has been replaced with phx-loading
Due to a bug in the newly released Safari 15, the previously used .phx-disconnected class has been replaced by a new .phx-loading class. The reason for the change is phx.new included a .phx-disconnected rule in the generated app.css which triggers the Safari bug. Renaming the class avoids applying the erroneous rule for existing applications. Folks can upgrade by simply renaming their .phx-disconnected rules to .phx-loading.
phx-capture-click has been deprecated in favor of phx-click-away
The new phx-click-away binding replaces phx-capture-click and is much more versatile because it can detect "click focus" being lost on containers.
Removal of previously deprecated functionality
Some functionality that was previously deprecated has been removed:
	Implicit assigns in live_component do-blocks is no longer supported
	Passing a @socket to live_component will now raise if possible

 Enhancements

	Allow slots in function components: they are marked as <:slot_name> and can be rendered with <%= render_slot @slot_name %>
	Add JS command for executing JavaScript utility operations on the client with an extended push API
	Optimize string attributes:	If the attribute is a string interpolation, such as <div class={"foo bar #{@baz}"}>, only the interpolation part is marked as dynamic
	If the attribute can be empty, such as "class" and "style", keep the attribute name as static

	Add a function component for rendering Phoenix.LiveComponent. Instead of <%= live_component FormComponent, id: "form" %>, you must now do: <.live_component module={FormComponent} id="form" />

 Bug fixes

	Fix LiveViews with form recovery failing to properly mount following a reconnect when preceded by a live redirect
	Fix stale session causing full redirect fallback when issuing a push_redirect from mount
	Add workaround for Safari bug causing tags with srcset and video with autoplay to fail to render
	Support EEx interpolation inside HTML comments in HEEx templates
	Support HTML tags inside script tags (as in regular HTML)
	Raise if using quotes in attribute names
	Include the filename in error messages when it is not possible to parse interpolated attributes
	Make sure the test client always sends the full URL on live_patch/live_redirect. This mirrors the behaviour of the JavaScript client
	Do not reload flash from session on live_redirects
	Fix select drop-down flashes in Chrome when the DOM is patched during focus

 Deprecations

	<%= live_component MyModule, id: @user.id, user: @user %> is deprecated in favor of <.live_component module={MyModule} id={@user.id} user={@user} />. Notice the new API requires using HEEx templates. This change allows us to further improve LiveComponent and bring new features such as slots to them.
	render_block/2 in deprecated in favor of render_slot/2

 0.16.4 (2021-09-22)

 Enhancements

	Improve HEEx error messages
	Relax HTML tag validation to support mixed case tags
	Support self closing HTML tags
	Remove requirement for handle_params to be defined for lifecycle hooks

 Bug fixes

	Fix pushes failing to include channel join_ref on messages

 0.16.3 (2021-09-03)

 Bug fixes

	Fix on_mount hooks calling view mount before redirecting when the hook issues a halt redirect.

 0.16.2 (2021-09-03)

 Enhancements

	Improve error messages on tokenization
	Improve error message if @inner_block is missing

 Bug fixes

	Fix phx-change form recovery event being sent to wrong component on reconnect when component order changes

 0.16.1 (2021-08-26)

 Enhancements

	Relax phoenix_html dependency requirement
	Allow testing functional components by passing a function reference
to Phoenix.LiveViewTest.render_component/3

 Bug fixes

	Do not generate CSRF tokens for non-POST forms
	Do not add compile-time dependencies on on_mount declarations

 0.16.0 (2021-08-10)

 Security Considerations Upgrading from 0.15

LiveView v0.16 optimizes live redirects by supporting navigation purely
over the existing WebSocket connection. This is accomplished by the new
live_session/3 feature of Phoenix.LiveView.Router. The
security guide has always stressed
the following:
... As we have seen, LiveView begins its life-cycle as a regular HTTP
request. Then a stateful connection is established. Both the HTTP
request and the stateful connection receives the client data via
parameters and session. This means that any session validation must
happen both in the HTTP request (plug pipeline) and the stateful
connection (LiveView mount) ...

These guidelines continue to be valid, but it is now essential that the
stateful connection enforces authentication and session validation within
the LiveView mount lifecycle because a live_redirect from the client
will not go through the plug pipeline as a hard-refresh or initial HTTP
render would. This means authentication, authorization, etc that may be
done in the Plug.Conn pipeline must also be performed within the
LiveView mount lifecycle.
Live sessions allow you to support a shared security model by allowing
live_redirects to only be issued between routes defined under the same
live session name. If a client attempts to live redirect to a different
live session, it will be refused and a graceful client-side redirect will
trigger a regular HTTP request to the attempted URL.
See the Phoenix.LiveView.Router.live_session/3 docs for more information
and example usage.

 New HTML Engine

LiveView v0.16 introduces HEEx (HTML + EEx) templates and the concept of function
components via Phoenix.Component. The new HEEx templates validate the markup in
the template while also providing smarter change tracking as well as syntax
conveniences to make it easier to build composable components.
A function component is any function that receives a map of assigns and returns
a ~H template:
defmodule MyComponent do
 use Phoenix.Component

 def btn(assigns) do
 ~H"""
 <button class="btn"><%= @text %></button>
 """
 end
end
This component can now be used as in your HEEx templates as:
<MyComponent.btn text="Save">
The introduction of HEEx and function components brings a series of deprecation
warnings, some introduced in this release and others which will be added in the
future. Note HEEx templates require Elixir v1.12+.

 Upgrading and deprecations

The main deprecation in this release is that the ~L sigil and the .leex extension
are now soft-deprecated. The docs have been updated to discourage them and using them
will emit warnings in future releases. We recommend using the ~H sigil and the .heex
extension for all future templates in your application. You should also plan to migrate
the old templates accordingly using the recommendations below.
Migrating from LEEx to HEEx is relatively straightforward. There are two main differences.
First of all, HEEx does not allow interpolation inside tags. So instead of:
<div id="<%= @id %>">
 ...
</div>
One should use the HEEx syntax:
<div id={@id}>
 ...
</div>
The other difference is in regards to form_for. Some templates may do the following:
~L"""
<%= f = form_for @changeset, "#" %>
 <%= input f, :foo %>
</form>
"""
However, when converted to ~H, it is not valid HTML: there is a </form> tag but
its opening is hidden inside the Elixir code. On LiveView v0.16, there is a function
component named form:
~H"""
<.form :let={f} for={@changeset}>
 <%= input f, :foo %>
</.form>
"""
We understand migrating all templates from ~L to ~H can be a daunting task.
Therefore we plan to support ~L in LiveViews for a long time. However, we can't
do the same for stateful LiveComponents, as some important client-side features and
optimizations will depend on the ~H sigil. Therefore our recommendation is to
replace ~L by ~H first in live components, particularly stateful live components.
Furthermore, stateless live_component (i.e. live components without an :id)
will be deprecated in favor of the new function components. Our plan is to support
them for a reasonable period of time, but you should avoid creating new ones in
your application.

 Breaking Changes

LiveView 0.16 removes the :layout and :container options from
Phoenix.LiveView.Routing.live/4 in favor of the :root_layout
and :container options on Phoenix.Router.live_session/3.
For instance, if you have the following in LiveView 0.15 and prior:
live "/path", MyAppWeb.PageLive, layout: {MyAppWeb.LayoutView, "custom_layout.html"}
Change it to:
live_session :session_name, root_layout: {MyAppWeb.LayoutView, "custom_layout.html"} do
 live "/path", MyAppWeb.PageLive
end
On the client, the phoenix_live_view package no longer provides a default export for LiveSocket.
If you have the following in your JavaScript entrypoint (typically located at assets/js/app.js):
import LiveSocket from "phoenix_live_view"
Change it to:
import { LiveSocket } from "phoenix_live_view"
Additionally on the client, the root LiveView element no longer exposes the
LiveView module name, therefore the phx-view attribute is never set.
Similarly, the viewName property of client hooks has been removed.
Codebases calling a custom function component/3 should rename it or specify its module to avoid a conflict,
as LiveView introduces a macro with that name and it is special cased by the underlying engine.

 Enhancements

	Introduce HEEx templates
	Introduce Phoenix.Component
	Introduce Phoenix.Router.live_session/3 for optimized live redirects
	Introduce on_mount and attach_hook hooks which provide a mechanism to tap into key stages of the LiveView lifecycle
	Add upload methods to client-side hooks
	[Helpers] Optimize live_img_preview rendering
	[Helpers] Introduce form function component which wraps Phoenix.HTML.form_for
	[LiveViewTest] Add with_target for scoping components directly
	[LiveViewTest] Add refute_redirected
	[LiveViewTest] Support multiple phx-target values to mirror JS client
	[LiveViewTest] Add follow_trigger_action
	[JavaScript Client] Add sessionStorage option LiveSocket constructor to support client storage overrides
	[JavaScript Client] Do not failsafe reload the page in the background when a tab is unable to connect if the page is not visible

 Bug fixes

	Make sure components are loaded on render_component to ensure all relevant callbacks are invoked
	Fix Phoenix.LiveViewTest.page_title returning nil in some cases
	Fix buttons being re-enabled when explicitly set to disabled on server
	Fix live patch failing to update URL when live patch link is patched again via handle_params within the same callback lifecycle
	Fix phx-no-feedback class not applied when page is live-patched
	Fix DOMException, querySelector, not a valid selector when performing DOM lookups on non-standard IDs
	Fix select dropdown flashing close/opened when assigns are updated on Chrome/macOS
	Fix error with multiple live_file_input in one form
	Fix race condition in showError causing null querySelector
	Fix statics not resolving correctly across recursive diffs
	Fix no function clause matching in Phoenix.LiveView.Diff.many_to_iodata
	Fix upload input not being cleared after files are uploaded via a component
	Fix channel crash when uploading during reconnect
	Fix duplicate progress events being sent for large uploads

 Deprecations

	Implicit assigns when passing a do-end block to live_component is deprecated
	The ~L sigil and the .leex extension are now soft-deprecated in favor of ~H and .heex
	Stateless live components (a live_component call without an :id) are deprecated in favor of the new function component feature

 0.15.7 (2021-05-24)

 Bug fixes

	Fix broken webpack build throwing missing morphdom dependency

 0.15.6 (2021-05-24)

 Bug fixes

	Fix live patch failing to update URL when live patch link is patched again from handle_params
	Fix regression in LiveViewTest.render_upload/3 when using channel uploads and progress callback
	Fix component uploads not being cleaned up on remove
	Fix KeyError on LiveView reconnect when an active upload was previously in progress

 Enhancements

	Support function components via component/3
	Optimize progress events to send less messages for larger file sizes
	Allow session and local storage client overrides

 Deprecations

	Deprecate @socket/socket argument on live_component/3 call

 0.15.5 (2021-04-20)

 Enhancements

	Add upload_errors/1 for returning top-level upload errors

 Bug fixes

	Fix consume_uploaded_entry/3 with external uploads causing inconsistent entries state
	Fix push_event losing events when a single diff produces multiple events from different components
	Fix deep merging of component tree sharing

 0.15.4 (2021-01-26)

 Bug fixes

	Fix nested live_render's causing remound of child LiveView even when ID does not change
	Do not attempt push hook events unless connected
	Fix preflighted refs causing auto_upload: true to fail to submit form
	Replace single upload entry when max_entries is 1 instead of accumulating multiple file selections
	Fix static_path in open_browser failing to load stylesheets

 0.15.3 (2021-01-02)

 Bug fixes

	Fix push_redirect back causing timeout on the client

 0.15.2 (2021-01-01)

 Backwards incompatible changes

	Remove beforeDestroy from phx-hook callbacks

 Bug fixes

	Fix form recovery failing to send input on first connection failure
	Fix hooks not getting remounted after LiveView reconnect
	Fix hooks reconnected callback being fired with no prior disconnect

 0.15.1 (2020-12-20)

 Enhancements

	Ensure all click events bubble for mobile Safari
	Run consume_uploaded_entries in LiveView caller process

 Bug fixes

	Fix hooks not getting remounted after LiveView recovery
	Fix bug causing reload with jitter on timeout from previously closed channel
	Fix component child nodes being lost when component patch goes from single root node to multiple child siblings
	Fix phx-capture-click triggering on mouseup during text selection
	Fix LiveView push_event's not clearing up in components
	Fix <textarea> being patched by LiveView while focused

 0.15.0 (2020-11-20)

 Enhancements

	Add live uploads support for file progress, interactive file selection, and direct to cloud support
	Implement Phoenix.LiveViewTest.open_browser/2 that opens up a browser with the LiveView page

 Backwards incompatible changes

	Remove @inner_content in components and introduce render_block for rendering component @inner_block
	Remove @live_module in socket templates in favor of @socket.view

 Bug fixes

	Make sure URLs are decoded after they are split
	Do not recover forms without inputs
	Fix race condition when components are removed and then immediately re-added before the client can notify their CIDs have been destroyed
	Do not render LiveView if only events/replies have been added to the socket
	Properly merge different components when sharing component subtrees on initial render
	Allow variables inside do-blocks to be tainted
	Fix push_redirect from mount hanging on the client and causing a fallback to full page reload when following a clicked live_redirect on the client

 0.14.8 (2020-10-30)

 Bug fixes

	Fix compatibility with latest Plug

 0.14.7 (2020-09-25)

 Bug fixes

	Fix redirect(socket, external: ...) when returned from an event
	Properly follow location hashes on live patch/redirect
	Fix failure in Phoenix.LiveViewTest when phx-update has non-HTML nodes as children
	Fix phx_trigger_action submitting the form before the DOM updates are complete

 0.14.6 (2020-09-21)

 Bug fixes

	Fix race condition on phx-trigger-action causing reconnects before server form submit

 0.14.5 (2020-09-20)

 Enhancements

	Optimize DOM prepend and append operations
	Add Phoenix.LiveView.send_update_after/3

 Bug fixes

	Fix scroll position when using back/forward with live_redirect's
	Handle recursive components when generating diffs
	Support hard redirects on mount
	Properly track nested components on deletion on Phoenix.LiveViewTest

 0.14.4 (2020-07-30)

 Bug fixes

	Fix hidden inputs throwing selection range error

 0.14.3 (2020-07-24)

 Enhancements

	Support render_layout with LiveEEx

 Bug fixes

	Fix focused inputs being overwritten by latent patch
	Fix LiveView error when "_target" input name contains array
	Fix change tracking when passing a do-block to components

 0.14.2 (2020-07-21)

 Bug fixes

	Fix Map of assigns together with @inner_content causing no function clause matching in Keyword.put/3 error
	Fix LiveViewTest failing to patch children properly for append/prepend based phx-update's
	Fix argument error when providing :as option to a live route
	Fix page becoming unresponsive when the server crashes while handling a live patch
	Fix empty diff causing pending data-ref based updates, such as classes and phx-disable-with content to not be updated
	Fix bug where throttling keydown events would eat key presses
	Fix <textarea>'s failing to be disabled on form submit
	Fix text node DOM memory leak when using phx-update append/prepend

 Enhancements

	Allow :router to be given to render_component
	Display file on compile warning for ~L
	Log error on client when using a hook without a DOM ID
	Optimize phx-update append/prepend based DOM updates

 0.14.1 (2020-07-09)

 Bug fixes

	Fix nested live_render's failing to be torn down when removed from the DOM in certain cases
	Fix LEEx issue for nested conditions failing to be re-evaluated

 0.14.0 (2020-07-07)

 Bug fixes

	Fix IE11 issue where document.activeElement creates a null reference
	Fix setup and teardown of root views when explicitly calling liveSocket.disconnect() followed by liveSocket.connect()
	Fix error_tag failing to be displayed for non-text based inputs such as selects and checkboxes as the phx-no-feedback class was always applied
	Fix phx-error class being applied on live_redirect
	Properly handle Elixir's special variables, such as __MODULE__
	No longer set disconnected class during patch
	Track flash keys to fix back-to-back flashes from being discarded
	Properly handle empty component diffs in the client for cases where the component has already been removed on the server
	Make sure components in nested live views do not conflict
	Fix phx-static not being sent from the client for child views
	Do not fail when trying to delete a view that was already deleted
	Ensure beforeDestroy is called on hooks in children of a removed element

 Enhancements

	Allow the whole component static subtree to be shared when the component already exists on the client
	Add telemetry events to mount, handle_params, and handle_event
	Add push_event for pushing events and data from the server to the client
	Add client handleEvent hook method for receiving events pushed from the server
	Add ability to receive a reply to a pushEvent from the server via {:reply, map, socket}
	Use event listener for popstate to avoid conflicting with user-defined popstate handlers
	Log error on client when rendering a component with no direct DOM children
	Make assigns.myself a struct to catch mistakes
	Log if component doesn't exist on send_update, raise if module is unavailable

 0.13.3 (2020-06-04)

 Bug fixes

	Fix duplicate debounced events from being triggered on blur with timed debounce
	Fix client error when live_redirected route results in a redirect to a non-live route on the server
	Fix DOM siblings being removed when a rootless component is updated
	Fix debounced input failing to send last change when blurred via Tab, Meta, or other non-printable keys

 Enhancements

	Add dom option to LiveSocket with onBeforeElUpdated callback for external client library support of broad DOM operations

 0.13.2 (2020-05-27)

 Bug fixes

	Fix a bug where swapping a root template with components would cause the LiveView to crash

 0.13.1 (2020-05-26)

 Bug fixes

	Fix forced page refresh when push_redirect from a live_redirect

 Enhancements

	Optimize component diffs to avoid sending empty diffs
	Optimize components to share static values
	[LiveViewTest] Automatically synchronize before render events

 0.13.0 (2020-05-21)

 Backwards incompatible changes

	No longer send event metadata by default. Metadata is now opt-in and user defined at the LiveSocket level.
To maintain backwards compatibility with pre-0.13 behaviour, you can provide the following metadata option:

 let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 click: (e, el) => {
 return {
 altKey: e.altKey,
 shiftKey: e.shiftKey,
 ctrlKey: e.ctrlKey,
 metaKey: e.metaKey,
 x: e.x || e.clientX,
 y: e.y || e.clientY,
 pageX: e.pageX,
 pageY: e.pageY,
 screenX: e.screenX,
 screenY: e.screenY,
 offsetX: e.offsetX,
 offsetY: e.offsetY,
 detail: e.detail || 1,
 }
 },
 keydown: (e, el) => {
 return {
 altGraphKey: e.altGraphKey,
 altKey: e.altKey,
 code: e.code,
 ctrlKey: e.ctrlKey,
 key: e.key,
 keyIdentifier: e.keyIdentifier,
 keyLocation: e.keyLocation,
 location: e.location,
 metaKey: e.metaKey,
 repeat: e.repeat,
 shiftKey: e.shiftKey
 }
 }
 }
 })

 Bug fixes

	Fix error caused by Chrome sending a keydown event on native UI autocomplete without a key
	Fix server error when a live navigation request issues a redirect
	Fix double window bindings when explicit calls to LiveSocket connect/disconnect/connect

 Enhancements

	Add Phoenix.LiveView.get_connect_info/1
	Add Phoenix.LiveViewTest.put_connect_info/2 and Phoenix.LiveViewTest.put_connect_params/2
	Add support for tracking static asset changes on the page across cold server deploys
	Add support for passing a @myself target to a hook's pushEventTo target
	Add configurable metadata for events with new metadata LiveSocket option
	Add "_mounts" key in connect params which specifies the number of times a LiveView has mounted

 0.12.1 (2020-04-19)

 Bug fixes

	Fix component innerHTML being discarded when a sibling DOM element appears above it, in cases where the component lacks a DOM ID
	Fix Firefox reconnecting briefly during hard redirects
	Fix phx-disable-with and other pending attributes failing to be restored when an empty patch is returned by server
	Ensure LiveView module is loaded before mount to prevent first application request logging errors if the very first request is to a connected LiveView

 0.12.0 (2020-04-16)

This version of LiveView comes with an overhaul of the testing module, more closely integrating your LiveView template with your LiveView events. For example, in previous versions, you could write this test:
 render_click(live_view, "increment_by", %{by: 1})
However, there is no guarantee that there is any element on the page with a phx-click="increment" attribute and phx-value-by set to 1. With LiveView 0.12.0, you can now write:
 live_view
 |> element("#term .buttons a", "Increment")
 |> render_click()
The new implementation will check there is a button at #term .buttons a, with "Increment" as text, validate that it has a phx-click attribute and automatically submit to it with all relevant phx-value entries. This brings us closer to integration/acceptance test frameworks without any of the overhead and complexities of running a headless browser.

 Enhancements

	Add assert_patch/3 and assert_patched/2 for asserting on patches
	Add follow_redirect/3 to automatically follow redirects from render_* events
	Add phx-trigger-action form annotation to trigger an HTTP form submit on next DOM patch

 Bug fixes

	Fix phx-target @myself targeting a sibling LiveView component with the same component ID
	Fix phx:page-loading-stop firing before the DOM patch has been performed
	Fix phx-update="prepend" failing to properly patch the DOM when the same ID is updated back to back
	Fix redirects on mount failing to copy flash

 Backwards incompatible changes

	phx-error-for has been removed in favor of phx-feedback-for. phx-feedback-for will set a phx-no-feedback class whenever feedback has to be hidden

	Phoenix.LiveViewTest.children/1 has been renamed to Phoenix.LiveViewTest.live_children/1

	Phoenix.LiveViewTest.find_child/2 has been renamed to Phoenix.LiveViewTest.find_live_child/2

	Phoenix.LiveViewTest.assert_redirect/3 no longer matches on the flash, instead it returns the flash

	Phoenix.LiveViewTest.assert_redirect/3 no longer matches on the patch redirects, use assert_patch/3 instead

	Phoenix.LiveViewTest.assert_remove/3 has been removed. If the LiveView crashes, it will cause the test to crash too

	Passing a path with DOM IDs to render_* test functions is deprecated. Furthermore, they now require a phx-target="<%= @id %>" on the given DOM ID:
<div id="component-id" phx-target="component-id">
 ...
</div>
html = render_submit([view, "#component-id"], event, value)
In any case, this API is deprecated and you should migrate to the new element based API.

 0.11.1 (2020-04-08)

 Bug fixes

	Fix readonly states failing to be undone after an empty diff
	Fix dynamically added child failing to be joined by the client
	Fix teardown bug causing stale client sessions to attempt a rejoin on reconnect
	Fix orphaned prepend/append content across joins
	Track unless in LiveEEx engine

 Backwards incompatible changes

	render_event/render_click and friends now expect a DOM ID selector to be given when working with components. For example, instead of render_click([live, "user-13"]), you should write render_click([live, "#user-13"]), mirroring the phx-target API.
	Accessing the socket assigns directly @socket.assigns[...] in a template will now raise the exception Phoenix.LiveView.Socket.AssignsNotInSocket. The socket assigns are available directly inside the template as LiveEEx assigns, such as @foo and @bar. Any assign access should be done using the assigns in the template where proper change tracking takes place.

 Enhancements

	Trigger debounced events immediately on input blur
	Support defaults option on LiveSocket constructor to configure default phx-debounce and phx-throttle values, allowing <input ... phx-debounce>
	Add detail key to click event metadata for detecting double/triple clicks

 0.11.0 (2020-04-06)

 Backwards incompatible changes

	Remove socket.assigns during render to avoid change tracking bugs. If you were previously relying on passing @socket to functions then referencing socket assigns, pass the explicit assign instead to your functions from the template.

	Removed assets/css/live_view.css. If you want to show a progress bar then in app.css, replace
- @import "../../../../deps/phoenix_live_view/assets/css/live_view.css";
+ @import "../node_modules/nprogress/nprogress.css";
and add nprogress to assets/package.json. Full details in the Progress animation guide

 Bug fixes

	Fix client issue with greater than two levels of LiveView nesting
	Fix bug causing entire LiveView to be re-rendering with only a component changed
	Fix issue where rejoins would not trigger phx:page-loading-stop

 Enhancements

	Support deep change tracking so @foo.bar only executes and diffs when bar changes
	Add @myself assign, to allow components to target themselves instead of relying on a DOM ID, for example: phx-target="<%= @myself %>"
	Optimize various client rendering scenarios for faster DOM patching
of components and append/prepended content
	Add enableProfiling() and disableProfiling() to LiveSocket for client performance profiling to aid the development process
	Allow LiveViews to be rendered inside LiveComponents
	Add support for clearing flash inside components

 0.10.0 (2020-03-18)

 Backwards incompatible changes

	Rename socket assign @live_view_module to @live_module
	Rename socket assign @live_view_action to @live_action
	LiveView no longer uses the default app layout and put_live_layout is no longer supported. Instead, use put_root_layout. Note, however, that the layout given to put_root_layout must use @inner_content instead of <%= render(@view_module, @view_template, assigns) %> and that the root layout will also be used by regular views. Check the Live Layouts section of the docs.

 Bug fixes

	Fix loading states causing nested LiveViews to be removed during live navigation
	Only trigger phx-update="ignore" hook if data attributes have changed
	Fix LiveEEx fingerprint bug causing no diff to be sent in certain cases

 Enhancements

	Support collocated templates where an .html.leex template of the same basename of the LiveView will be automatically used for render/1
	Add live_title_tag/2 helper for automatic prefix/suffix on @page_title updates

 0.9.0 (2020-03-08)

 Bug fixes

	Do not set ignored inputs and buttons as readonly
	Only decode paths in URIs
	Only destroy main descendents when replacing main
	Fix sibling component patches when siblings at same root DOM tree
	Do not pick the layout from :use on child LiveViews
	Respect when the layout is set to false in the router and on mount
	Fix sibling component patch when component siblings lack a container
	Make flash optional (i.e. LiveView will still work if you don't fetch_flash before)

 Enhancements

	Raise if :flash is given as an assign
	Support user-defined metadata in router
	Allow the router to be accessed as socket.router
	Allow MFArgs as the :session option in the live router macro
	Trigger page loading event when main LV errors
	Automatically clear the flash on live navigation examples - only the newly assigned flash is persisted

 0.8.1 (2020-02-27)

 Enhancements

	Support phx-disable-with on live redirect and live patch links

 Bug Fixes

	Fix focus issue on date and time inputs
	Fix LiveViews failing to mount when page restored from back/forward cache following a redirect on the server
	Fix IE coercing undefined to string when issuing pushState
	Fix IE error when focused element is null
	Fix client error when using components and live navigation where a dynamic template is rendered
	Fix latent component diff causing error when component removed from DOM before patch arrives
	Fix race condition where a component event received on the server for a component already removed by the server raised a match error

 0.8.0 (2020-02-22)

 Backwards incompatible changes

	Remove Phoenix.LiveView.Flash in favor of :fetch_live_flash imported by Phoenix.LiveView.Router
	Live layout must now access the child contents with @inner_content instead of invoking the LiveView directly
	Returning :stop tuples from LiveView mount or handle_[params|call|cast|info|event] is no longer supported. LiveViews are stopped when issuing a redirect or push_redirect

 Enhancements

	Add put_live_layout plug to put the root layout used for live routes
	Allow redirect and push_redirect from mount
	Use acknowledgement tracking to avoid patching inputs until the server has processed the form event
	Add CSS loading states to all phx bound elements with event specific CSS classes
	Dispatch phx:page-loading-start and phx:page-loading-stop on window for live navigation, initial page loads, and form submits, for user controlled page loading integration
	Allow any phx bound element to specify phx-page-loading to dispatch loading events above when the event is pushed
	Add client side latency simulator with new enableLatencySim(milliseconds) and disableLatencySim()
	Add enableDebug() and disableDebug() to LiveSocket for ondemand browser debugging from the web console
	Do not connect LiveSocket WebSocket or bind client events unless a LiveView is found on the page
	Add transport_pid/1 to return the websocket transport pid when the socket is connected

 Bug Fixes

	Fix issue where a failed mount from a live_redirect would reload the current URL instead of the attempted new URL

 0.7.1 (2020-02-13)

 Bug Fixes

	Fix checkbox bug failing to send phx-change event to the server in certain cases
	Fix checkbox bug failing to maintain checked state when a checkbox is programmatically updated by the server
	Fix select bug in Firefox causing the highlighted index to jump when a patch is applied during hover state

 0.7.0 (2020-02-12)

 Backwards incompatible changes

	live_redirect was removed in favor of push_patch (for updating the URL and params of the current LiveView) and push_redirect (for updating the URL to another LiveView)
	live_link was removed in favor of live_patch (for updating the URL and params of the current LiveView) and live_redirect (for updating the URL to another LiveView)
	Phoenix.LiveViewTest.assert_redirect no longer accepts an anonymous function in favor of executing the code
prior to asserting the redirects, just like assert_receive.

 Enhancements

	Support @live_view_action in LiveViews to simplify tracking of URL state
	Recovery form input data automatically on disconnects or crash recovery
	Add phx-auto-recover form binding for specialized recovery
	Scroll to top of page while respecting anchor hash targets on live_patch and live_redirect
	Add phx-capture-click to use event capturing to bind a click event as it propagates inwards from the target
	Revamp flash support so it works between static views, live views, and components
	Add phx-key binding to scope phx-window-keydown and phx-window-keyup events

 Bug Fixes

	Send phx-value-* on key events
	Trigger updated hook callbacks on phx-update="ignore" container when the container's attributes have changed
	Fix nested phx-update="append" raising ArgumentError in LiveViewTest
	Fix updates not being applied in rare cases where an leex template is wrapped in an if expression

 0.6.0 (2020-01-22)

 Deprecations

	LiveView mount/2 has been deprecated in favor of mount/3. The params are now passed as the first argument to mount/3, followed by the session and socket.

 Backwards incompatible changes

	The socket session now accepts only string keys

 Enhancements

	Allow window beforeunload to be cancelled without losing websocket connection

 Bug Fixes

	Fix handle_params not decoding URL path parameters properly
	Fix LiveViewTest error when routing at root path
	Fix URI encoded params failing to be decoded in handle_params
	Fix component target failing to locate correct component when the target is on an input tag

 0.5.2 (2020-01-17)

 Bug Fixes

	Fix optimization bug causing some DOM nodes to be removed on updates

 0.5.1 (2020-01-15)

 Bug Fixes

	Fix phx-change bug causing phx-target to not be used

 0.5.0 (2020-01-15)

LiveView now makes the connection session automatically available in LiveViews. However, to do so, you need to configure your endpoint accordingly, otherwise LiveView will fail to connect.
The steps are:
	Find plug Plug.Session, ... in your endpoint.ex and move the options ... to a module attribute:
 @session_options [
 ...
]

	Change the plug Plug.Session to use said attribute:
 plug Plug.Session, @session_options

	Also pass the @session_options to your LiveView socket:
 socket "/live", Phoenix.LiveView.Socket,
 websocket: [connect_info: [session: @session_options]]

	You should define the CSRF meta tag inside <head> in your layout, before app.js is included:
 <meta name="csrf-token" content={Plug.CSRFProtection.get_csrf_token()} />
 <script type="text/javascript" src="<%= Routes.static_path(@conn, "/js/app.js") %>"></script>

	Then in your app.js:
 let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content");
 let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}});

Also note that the session from now on will have string keys. LiveView will warn if atom keys are used.

 Enhancements

	Respect new tab behavior in live_link
	Add beforeUpdate and beforeDestroy JS hooks
	Make all assigns defined on the socket mount available on the layout on first render
	Provide support for live layouts with new :layout option
	Detect duplicate IDs on the front-end when DEBUG mode is enabled
	Automatically forward the session to LiveView
	Support "live_socket_id" session key for identifying (and disconnecting) LiveView sockets
	Add support for hibernate_after on LiveView processes
	Support redirecting to full URLs on live_redirect and redirect
	Add offsetX and offsetY to click event metadata
	Allow live_link and live_redirect to exist anywhere in the page and it will always target the main LiveView (the one defined at the router)

 Backwards incompatible changes

	phx-target="window" has been removed in favor of phx-window-keydown, phx-window-focus, etc, and the phx-target binding has been repurposed for targeting LiveView and LiveComponent events from the client
	Phoenix.LiveView no longer defined live_render and live_link. These functions have been moved to Phoenix.LiveView.Helpers which can now be fully imported in your views. In other words, replace import Phoenix.LiveView, only: [live_render: ..., live_link: ...] by import Phoenix.LiveView.Helpers

 0.4.1 (2019-11-07)

 Bug Fixes

	Fix bug causing blurred inputs

 0.4.0 (2019-11-07)

 Enhancements

	Add Phoenix.LiveComponent to compartmentalize state, markup, and events in LiveView
	Handle outdated clients by refreshing the page with jitter when a valid, but outdated session is detected
	Only dispatch live link clicks to router LiveView
	Refresh the page for graceful error recovery on failed mount when the socket is in a connected state

 Bug Fixes

	Fix phx-hook destroyed callback failing to be called in certain cases
	Fix back/forward bug causing LiveView to fail to remount

 0.3.1 (2019-09-23)

 Backwards incompatible changes

	live_isolated in tests no longer requires a router and a pipeline (it now expects only 3 arguments)
	Raise if handle_params is used on a non-router LiveView

 Bug Fixes

	[LiveViewTest] Fix function clause errors caused by HTML comments

 0.3.0 (2019-09-19)

 Enhancements

	Add phx-debounce and phx-throttle bindings to rate limit events

 Backwards incompatible changes

	IE11 support now requires two additional polyfills, mdn-polyfills/CustomEvent and mdn-polyfills/String.prototype.startsWith

 Bug Fixes

	Fix IE11 support caused by unsupported getAttributeNames lookup
	Fix Floki dependency compilation warnings

 0.2.1 (2019-09-17)

 Bug Fixes

	[LiveView.Router] Fix module concat failing to build correct layout module when using custom namespace
	[LiveViewTest] Fix phx-update append/prepend containers not building proper DOM content
	[LiveViewTest] Fix phx-update append/prepend containers not updating existing child containers with matching IDs

 0.2.0 (2019-09-12)

 Enhancements

	[LiveView] Add new :container option to use Phoenix.LiveView
	[LiveViewTest] Add live_isolated test helper for testing LiveViews which are not routable

 Backwards incompatible changes

	Replace configure_temporary_assigns/2 with 3-tuple mount return, supporting a :temporary_assigns key
	Do not allow redirect/live_redirect on mount nor in child live views
	All phx-update containers now require a unique ID
	LiveSocket JavaScript constructor now requires explicit dependency injection of Phoenix Socket constructor. For example:

import {Socket} from "phoenix"
import LiveSocket from "phoenix_live_view"

let liveSocket = new LiveSocket("/live", Socket, {...})

 Bug Fixes

	Fix phx-update=append/prepend failing to join new nested live views or wire up new phx-hooks
	Fix number input handling causing some browsers to reset form fields on invalid inputs
	Fix multi-select decoding causing server error
	Fix multi-select change tracking failing to submit an event when a value is deselected
	Fix live redirect loop triggered under certain scenarios
	Fix params failing to update on re-mounts after live_redirect
	Fix blur event metadata being sent with type of "focus"

 0.1.2 (2019-08-28)

 Backwards incompatible changes

	phx-value has no effect, use phx-value-* instead
	The :path_params key in session has no effect (use handle_params in LiveView instead)

 0.1.1 (2019-08-27)

 Enhancements

	Use optimized insertAdjacentHTML for faster append/prepend and proper CSS animation handling
	Allow for replacing previously appended/prepended elements by replacing duplicate IDs during append/prepend instead of adding new DOM nodes

 Bug Fixes

	Fix duplicate append/prepend updates when parent content is updated
	Fix JS hooks not being applied for appending and prepended content

 0.1.0 (2019-08-25)

 Enhancements

	The LiveView handle_in/3 callback now receives a map of metadata about the client event
	For phx-change events, handle_in/3 now receives a "_target" param representing the keyspace of the form input name which triggered the change
	Multiple values may be provided for any phx binding by using the phx-value- prefix, such as phx-value-myval1, phx-value-myval2, etc
	Add control over the DOM patching via phx-update, which can be set to "replace", "append", "prepend" or "ignore"

 Backwards incompatible changes

	phx-ignore was renamed to phx-update="ignore"

Welcome

Welcome to Phoenix LiveView documentation. Phoenix LiveView enables
rich, real-time user experiences with server-rendered HTML. A general
overview of LiveView and its benefits is available in our README.

 What is a LiveView?

LiveViews are processes that receive events, update their state,
and render updates to a page as diffs.
The LiveView programming model is declarative: instead of saying
"once event X happens, change Y on the page", events in LiveView
are regular messages which may cause changes to the state. Once
the state changes, the LiveView will re-render the relevant parts of
its HTML template and push it to the browser, which updates the page
in the most efficient manner.
LiveView state is nothing more than functional and immutable
Elixir data structures. The events are either internal application messages
(usually emitted by Phoenix.PubSub) or sent by the client/browser.
Every LiveView is first rendered statically as part of a regular
HTTP request, which provides quick times for "First Meaningful
Paint", in addition to helping search and indexing engines.
A persistent connection is then established between the client and
server. This allows LiveView applications to react faster to user
events as there is less work to be done and less data to be sent
compared to stateless requests that have to authenticate, decode, load,
and encode data on every request.

 Example

LiveView is included by default in Phoenix applications.
Therefore, to use LiveView, you must have already installed Phoenix
and created your first application. If you haven't done so,
check Phoenix' installation guide
to get started.
The behaviour of a LiveView is outlined by a module which implements
a series of functions as callbacks. Let's see an example. Write the
file below to lib/my_app_web/live/thermostat_live.ex:
defmodule MyAppWeb.ThermostatLive do
 # In Phoenix v1.6+ apps, the line is typically: use MyAppWeb, :live_view
 use Phoenix.LiveView

 def render(assigns) do
 ~H"""
 Current temperature: <%= @temperature %>°F
 <button phx-click="inc_temperature">+</button>
 """
 end

 def mount(_params, _session, socket) do
 temperature = 70 # Let's assume a fixed temperature for now
 {:ok, assign(socket, :temperature, temperature)}
 end

 def handle_event("inc_temperature", _params, socket) do
 {:noreply, update(socket, :temperature, &(&1 + 1))}
 end
end
The module above defines three functions (they are callbacks
required by LiveView). The first one is render/1,
which receives the socket assigns and is responsible for returning
the content to be rendered on the page. We use the ~H sigil to define
a HEEx template, which stands for HTML+EEx. They are an extension of
Elixir's builtin EEx templates, with support for HTML validation, syntax-based
components, smart change tracking, and more. You can learn more about
the template syntax in Phoenix.Component.sigil_H/2 (note
Phoenix.Component is automatically imported when you use Phoenix.LiveView).
The data used on rendering comes from the mount callback. The
mount callback is invoked when the LiveView starts. In it, you
can access the request parameters, read information stored in the
session (typically information which identifies who is the current
user), and a socket. The socket is where we keep all state, including
assigns. mount proceeds to assign a default temperature to the socket.
Because Elixir data structures are immutable, LiveView APIs often
receive the socket and return an updated socket. Then we return
{:ok, socket} to signal that we were able to mount the LiveView
successfully. After mount, LiveView will render the page with the
values from assigns and send it to the client.
If you look at the HTML rendered, you will notice there is a button
with a phx-click attribute. When the button is clicked, a
"inc_temperature" event is sent to the server, which is matched and
handled by the handle_event callback. This callback updates the socket
and returns {:noreply, socket} with the updated socket.
handle_* callbacks in LiveView (and in Elixir in general) are
invoked based on some action, in this case, the user clicking a button.
The {:noreply, socket} return means there is no additional replies
sent to the browser, only that a new version of the page is rendered.
LiveView then computes diffs and sends them to the client.
Now we are ready to render our LiveView. You can serve the LiveView
directly from your router:
defmodule MyAppWeb.Router do
 use Phoenix.Router
 import Phoenix.LiveView.Router

 scope "/", MyAppWeb do
 live "/thermostat", ThermostatLive
 end
end
Once the LiveView is rendered, a regular HTML response is sent. In your
app.js file, you should find the following:
import {Socket} from "phoenix"
import {LiveSocket} from "phoenix_live_view"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}})
liveSocket.connect()
Now the JavaScript client will connect over WebSockets and mount/3 will be invoked
inside a spawned LiveView process.

 Parameters and session

The mount callback receives three arguments: the request parameters, the session, and the socket.
The parameters can be used to read information from the URL. For example, assuming you have a Thermostat module defined somewhere that can read this information based on the house name, you could write this:
def mount(%{"house" => house}, _session, socket) do
 temperature = Thermostat.get_house_reading(house)
 {:ok, assign(socket, :temperature, temperature)}
end
And then in your router:
live "/thermostat/:house", ThermostatLive
The session retrieves information from a signed (or encrypted) cookie. This is where you can store authentication information, such as current_user_id:
def mount(_params, %{"current_user_id" => user_id}, socket) do
 temperature = Thermostat.get_user_reading(user_id)
 {:ok, assign(socket, :temperature, temperature)}
end
Phoenix comes with built-in authentication generators. See mix phx.gen.auth.

Most times, in practice, you will use both:
def mount(%{"house" => house}, %{"current_user_id" => user_id}, socket) do
 temperature = Thermostat.get_house_reading(user_id, house)
 {:ok, assign(socket, :temperature, temperature)}
end
In other words, you want to read the information about a given house, as long as the user has access to it.

 Bindings

Phoenix supports DOM element bindings for client-server interaction. For
example, to react to a click on a button, you would render the element:
<button phx-click="inc_temperature">+</button>
Then on the server, all LiveView bindings are handled with the handle_event/3
callback, for example:
def handle_event("inc_temperature", _value, socket) do
 {:noreply, update(socket, :temperature, &(&1 + 1))}
end
To update UI state, for example, to open and close dropdowns, switch tabs,
etc, LiveView also supports JS commands (Phoenix.LiveView.JS), which
execute directly on the client without reaching the server. To learn more,
see our bindings page for a complete list of all LiveView
bindings as well as our JavaScript interoperability guide.
LiveView has built-in support for forms, including uploads and association
management. See Phoenix.Component.form/1 as a starting point and
Phoenix.Component.inputs_for/1 for working with associations.
The Uploads and Form bindings guides provide
more information about advanced features.

 Navigation

LiveView provides functionality to allow page navigation using the
browser's pushState API.
With live navigation, the page is updated without a full page reload.
You can either patch the current LiveView, updating its URL, or
navigate to a new LiveView. You can learn more about them in the
Live Navigation guide.

 Generators

Phoenix v1.6 and later includes code generators for LiveView. If you want to see
an example of how to structure your application, from the database all the way up
to LiveViews, run the following:
mix phx.gen.live Blog Post posts title:string body:text
For more information, run mix help phx.gen.live.
For authentication, with built-in LiveView support, run mix phx.gen.auth Account User users.

 Compartmentalize state, markup, and events in LiveView

LiveView supports two extension mechanisms: function components, provided by
HEEx templates, and stateful components.
Function components are any function that receives an assigns map, similar
to render(assigns) in our LiveView, and returns a ~H template. For example:
def weather_greeting(assigns) do
 ~H"""
 <div title="My div" class={@class}>
 <p>Hello <%= @name %></p>
 <MyApp.Weather.city name="Kraków"/>
 </div>
 """
end
You can learn more about function components in the Phoenix.Component
module. At the end of the day, they are a useful mechanism to reuse markup
in your LiveViews.
However, sometimes you need to compartmentalize or reuse more than markup.
Perhaps you want to move part of the state or part of the events in your
LiveView to a separate module. For these cases, LiveView provides
Phoenix.LiveComponent, which are rendered using
live_component/1:
<.live_component module={UserComponent} id={user.id} user={user} />
Components have their own mount/3 and handle_event/3 callbacks, as
well as their own state with change tracking support. Components are also
lightweight as they "run" in the same process as the parent LiveView.
However, this means an error in a component would cause the whole view to
fail to render. See Phoenix.LiveComponent for a complete rundown on components.
Finally, if you want complete isolation between parts of a LiveView, you can
always render a LiveView inside another LiveView by calling
live_render/3. This child LiveView
runs in a separate process than the parent, with its own callbacks. If a child
LiveView crashes, it won't affect the parent. If the parent crashes, all children
are terminated.
When rendering a child LiveView, the :id option is required to uniquely
identify the child. A child LiveView will only ever be rendered and mounted
a single time, provided its ID remains unchanged. To force a child to re-mount
with new session data, a new ID must be provided.
Given that a LiveView runs on its own process, it is an excellent tool for creating
completely isolated UI elements, but it is a slightly expensive abstraction if
all you want is to compartmentalize markup or events (or both).
To sum it up:
	use Phoenix.Component to compartmentalize/reuse markup
	use Phoenix.LiveComponent to compartmentalize state, markup, and events
	use nested Phoenix.LiveView to compartmentalize state, markup, events, and error isolation

 Guides

This documentation is split into two categories. We have the API
reference for all LiveView modules, that's where you will learn
more about Phoenix.Component, Phoenix.LiveView, and so on.
LiveView also has many guides to help you on your journey,
split on server-side and client-side:

 Server-side

These guides focus on server-side functionality:
	Assigns and HEEx templates
	Deployments
	Error and exception handling
	Live layouts
	Live navigation
	Security considerations
	Telemetry
	Uploads
	Gettext for internationalization

 Client-side

These guides focus on LiveView bindings and client-side integration:
	Bindings
	Form bindings
	JavaScript interoperability
	External uploads

Assigns and HEEx templates

All of the data in a LiveView is stored in the socket, which is a server
side struct called Phoenix.LiveView.Socket. Your own data is stored
under the assigns key of said struct. The server data is never shared
with the client beyond what your template renders.
Phoenix template language is called HEEx (HTML+EEx). EEx is Embedded
Elixir, an Elixir string template engine. Those templates
are either files with the .heex extension or they are created
directly in source files via the ~H sigil. You can learn more about
the HEEx syntax by checking the docs for the ~H sigil.
The Phoenix.Component.assign/2 and Phoenix.Component.assign/3
functions help store those values. Those values can be accessed
in the LiveView as socket.assigns.name but they are accessed
inside HEEx templates as @name.
In this section, we are going to cover how LiveView minimizes
the payload over the wire by understanding the interplay between
assigns and templates.

 Change tracking

When you first render a .heex template, it will send all of the
static and dynamic parts of the template to the client. Imagine the
following template:
<h1><%= expand_title(@title) %></h1>
It has two static parts, <h1> and </h1> and one dynamic part
made of expand_title(@title). Further rendering of this template
won't resend the static parts and it will only resend the dynamic
part if it changes.
The tracking of changes is done via assigns. If the @title assign
changes, then LiveView will execute the dynamic parts of the template,
expand_title(@title), and send
the new content. If @title is the same, nothing is executed and
nothing is sent.
Change tracking also works when accessing map/struct fields.
Take this template:
<div id={"user_#{@user.id}"}>
 <%= @user.name %>
</div>
If the @user.name changes but @user.id doesn't, then LiveView
will re-render only @user.name and it will not execute or resend @user.id
at all.
The change tracking also works when rendering other templates as
long as they are also .heex templates:
<%= render "child_template.html", assigns %>
Or when using function components:
<.show_name name={@user.name} />
The assign tracking feature also implies that you MUST avoid performing
direct operations in the template. For example, if you perform a database
query in your template:
<%= for user <- Repo.all(User) do %>
 <%= user.name %>
<% end %>
Then Phoenix will never re-render the section above, even if the number of
users in the database changes. Instead, you need to store the users as
assigns in your LiveView before it renders the template:
assign(socket, :users, Repo.all(User))
Generally speaking, data loading should never happen inside the template,
regardless if you are using LiveView or not. The difference is that LiveView
enforces this best practice.

 Pitfalls

There are some common pitfalls to keep in mind when using the ~H sigil
or .heex templates inside LiveViews.

 Variables

Due to the scope of variables, LiveView has to disable change tracking
whenever variables are used in the template, with the exception of
variables introduced by Elixir block constructs such as case,
for, if, and others. Therefore, you must avoid code like
this in your HEEx templates:
<% some_var = @x + @y %>
<%= some_var %>
Instead, use a function:
<%= sum(@x, @y) %>
Similarly, do not define variables at the top of your render function
for LiveViews or LiveComponents. Since LiveView cannot track sum or title,
if either value changes, both must be re-rendered by LiveView.
def render(assigns) do
 sum = assigns.x + assigns.y
 title = assigns.title

 ~H"""
 <h1><%= title %></h1>

 <%= sum %>
 """
end
Instead use the assign/2, assign/3, assign_new/3, and update/3
functions to compute it. Any assign defined or updated this way will be marked as
changed, while other assigns like @title will still be tracked by LiveView.
assign(assigns, sum: assigns.x + assigns.y)
The same functions can be used inside function components too:
attr :x, :integer, required: true
attr :y, :integer, required: true
attr :title, :string, required: true
def sum_component(assigns) do
 assigns = assign(assigns, sum: assigns.x + assigns.y)

 ~H"""
 <h1><%= @title %></h1>

 <%= @sum %>
 """
end
Generally speaking, avoid accessing variables inside HEEx templates, as code that
access variables is always executed on every render. The exception are variables
introduced by Elixir's block constructs. For example, accessing the post variable
defined by the comprehension below works as expected:
<%= for post <- @posts do %>
 ...
<% end %>

 The assigns variable

When talking about variables, it is also worth discussing the assigns
special variable. Every time you use the ~H sigil, you must define an
assigns variable, which is also available on every .heex template.
However, we must avoid accessing this variable directly inside templates
and instead use @ for accessing specific keys. This also applies to
function components. Let's see some examples.
Sometimes you might want to pass all assigns from one function component to
another. For example, imagine you have a complex card component with
header, content and footer section. You might refactor your component
into three smaller components internally:
def card(assigns) do
 ~H"""
 <div class="card">
 <.card_header {assigns} />
 <.card_body {assigns} />
 <.card_footer {assigns} />
 </div>
 """
end

defp card_header(assigns) do
 ...
end

defp card_body(assigns) do
 ...
end

defp card_footer(assigns) do
 ...
end
Because of the way function components handle attributes, the above code will
not perform change tracking and it will always re-render all three components
on every change.
Generally, you should avoid passing all assigns and instead be explicit about
which assigns the child components need:
def card(assigns) do
 ~H"""
 <div class="card">
 <.card_header title={@title} class={@title_class} />
 <.card_body>
 <%= render_slot(@inner_block) %>
 </.card_body>
 <.card_footer on_close={@on_close} />
 </div>
 """
end
If you really need to pass all assigns you should instead use the regular
function call syntax. This is the only case where accessing assigns inside
templates is acceptable:
def card(assigns) do
 ~H"""
 <div class="card">
 <%= card_header(assigns) %>
 <%= card_body(assigns) %>
 <%= card_footer(assigns) %>
 </div>
 """
end
This ensures that the change tracking information from the parent component
is passed to each child component, only re-rendering what is necessary.
However, generally speaking, it is best to avoid passing assigns altogether
and instead let LiveView figure out the best way to track changes.

 Summary

To sum up:
	Avoid defining local variables inside HEEx templates, except within Elixir's constructs

	Avoid passing or accessing the assigns variable inside HEEx templates

Deployments

One of the questions that arise from LiveView stateful model is what considerations are necessary when deploying a new version of LiveView.
First off, whenever LiveView disconnects, it will automatically attempt to reconnect to the server using exponential back-off. This means it will try immediately, then wait 2s and try again, then 5s and so on. If you are deploying, this typically means the next reconnection will immediately succeed and your load balancer will automatically redirect to the new servers.
However, your LiveView may still have state that will be lost in this transition. How to deal with it? The good news is that there are a series of practices you can follow that will not only help with deployments but it will improve your application in general.
	Keep state in the query parameters when appropriate. For example, if your application has tabs and the user clicked a tab, instead of using phx-click and Phoenix.LiveView.handle_event/3 to manage it, you should implement it using <.link patch={...}> passing the tab name as parameter. You will then receive the new tab name Phoenix.LiveView.handle_params/3 which will set the relevant assign to choose which tab to display. You can even define specific URLs for each tab in your application router. By doing this, you will reduce the amount of server state, make tab navigation sharable via links, improving search engine indexing, and more.

	Consider storing other relevant state in the database. For example, if you are building a chat app and you want to store which messages have been read, you can store so in the database. Once the page is loaded, you retrieve the index of the last read message. This makes the application more robust, allow data to be synchronized across devices, etc.

	If your application uses forms (which is most likely true), keep in mind that Phoenix perform automatic form recovery: in case of disconnections, Phoenix will collect the form data and resubmit it on reconnection. This mechanism works out of the box for most forms but you may want to customize it or test it for your most complex forms. See the relevant section in the "Form bindings" document to learn more.

The idea is that: if you follow the practices above, most of your state is already handled within your app and therefore deployments should not bring additional concerns. Not only that, it will bring overall benefits to your app such as indexing, link sharing, device sharing, and so on.
If you really have complex state that cannot be immediately handled, then you may need to resort to special strategies. This may be persisting "old" state to Redis/S3/Database and loading the new state on the new connections. Or you may take special care when migrating connections (for example, if you are building a game, you may want to wait for on-going sessions to finish before turning down the old server while routing new sessions to the new ones). Such cases will depend on your requirements (and they would likely exist regardless of which application stack you are using).

Error and exception handling

As with any other Elixir code, exceptions may happen during the LiveView
life-cycle. This page describes how LiveView handles errors at different
stages.

 Expected scenarios

In this section, we will talk about error cases that you expect to happen
within your application. For example, a user filling in a form with invalid
data is expected. In a LiveView, we typically handle those cases by storing
the form state in LiveView assigns and rendering any relevant error message
back to the client.
We may also use flash messages for this. For example, imagine you have a
page to manage all "Team members" in an organization. However, if there is
only one member left in the organization, they should not be allowed to
leave. You may want to handle this by using flash messages:
if MyApp.Org.leave(socket.assigns.current_org, member) do
 {:noreply, socket}
else
 {:noreply, put_flash(socket, :error, "last member cannot leave organization")}
end
However, one may argue that, if the last member of an organization cannot
leave it, it may be better to not even show the "Leave" button in the UI
when the organization has only one member.
Given the button does not appear in the UI, triggering the "leave" action when
the organization has only one member is an unexpected scenario. This means we
can rewrite the code above to:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
If leave does not return true, Elixir will raise a MatchError
exception. Or you could provide a leave! function that raises a specific
exception:
MyApp.Org.leave!(socket.assigns.current_org, member)
{:noreply, socket}
However, what will happen with a LiveView in case of exceptions?
Let's talk about unexpected scenarios.

 Unexpected scenarios

Elixir developers tend to write assertive code. This means that, if we
expect leave to always return true, we can explicitly match on its
result, as we did above:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
If leave fails and returns false, an exception is raised. It is common
for Elixir developers to use exceptions for unexpected scenarios in their
Phoenix applications.
For example, if you are building an application where a user may belong to
one or more organizations, when accessing the organization page, you may want to
check that the user has access to it like this:
organizations_query = Ecto.assoc(socket.assigns.current_user, :organizations)
Repo.get!(organizations_query, params["org_id"])
The code above builds a query that returns all organizations that belongs to
the current user and then validates that the given org_id belongs to the
user. If there is no such org_id or if the user has no access to it,
Repo.get! will raise an Ecto.NoResultsError exception.
During a regular controller request, this exception will be converted to a
404 exception and rendered as a custom error page, as
detailed here.
LiveView will react to exceptions in three different ways, depending on
where it is in its life-cycle.

 Exceptions during HTTP mount

When you first access a LiveView, a regular HTTP request is sent to the server
and processed by the LiveView. The mount callback is invoked and then a page
is rendered. Any exception here is caught, logged, and converted to an exception
page by Phoenix error views - exactly how it works with controllers too.

 Exceptions during connected mount

If the initial HTTP request succeeds, LiveView will connect to the server
using a stateful connection, typically a WebSocket. This spawns a long-running
lightweight Elixir process on the server, which invokes the mount callback
and renders an updated version of the page.
An exception during this stage will crash the LiveView process, which will be logged.
Once the client notices the crash, it fully reloads the page. This will cause mount
to be invoked again during a regular HTTP request (the exact scenario of the previous
subsection).
In other words, LiveView will reload the page in case of errors, making it
fail as if LiveView was not involved in the rendering in the first place.

 Exceptions after connected mount

Once your LiveView is mounted and connected, any error will cause the LiveView process
to crash and be logged. Once the client notices the error, it will remount the LiveView
over the stateful connection, without reloading the page (the exact scenario of the
previous subsection). If remounting succeeds, the LiveView goes back to a working
state, updating the page and showing the user the latest information.
For example, let's say two users try to leave the organization at the same time.
In this case, both of them see the "Leave" button, but our leave function call
will succeed only for one of them:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
When the exception raises, the client will remount the LiveView. Once you remount,
your code will now notice that there is only one user in the organization and
therefore no longer show the "Leave" button. In other words, by remounting,
we often update the state of the page, allowing exceptions to be automatically
handled.
Note that the choice between conditionally checking on the result of the leave
function with an if, or simply asserting it returns true, is completely
up to you. If the likelihood of everyone leaving the organization at the same
time is low, then you may as well treat it as an unexpected scenario. Although
other developers will be more comfortable by explicitly handling those cases.
In both scenarios, LiveView has you covered.

Live layouts

From Phoenix v1.7, your application is made of two layouts:
	the root layout - this is a layout used by both LiveView and
regular views. This layout typically contains the <html>
definition alongside the head and body tags. Any content defined
in the root layout will remain the same, even as you live navigate
across LiveViews. The root layout is typically declared on the
router with put_root_layout and defined as "root.html.heex"
in your layouts folder

	the app layout - this is the default application layout which
is rendered on both regular HTTP requests and LiveViews.
It defaults to "app.html.heex"

Overall, those layouts are found in components/layouts and are
embedded within MyAppWeb.Layouts.
All layouts must call <%= @inner_content %> to inject the
content rendered by the layout.

 Root layout

The "root" layout is rendered only on the initial request and
therefore it has access to the @conn assign. The root layout
is typically defined in your router:
plug :put_root_layout, html: {MyAppWeb.Layouts, :root}
The root layout can also be set via the :root_layout option
in your router via Phoenix.LiveView.Router.live_session/2.

 Application layout

The "app.html.heex" layout is rendered with either @conn or
@socket. Both Controllers and LiveViews explicitly define
the default layouts they will use. See the def controller
and def live_view definitions in your MyAppWeb to learn how
it is included.
For LiveViews, the default layout can be overridden in two different
ways for flexibility:
	The :layout option in Phoenix.LiveView.Router.live_session/2,
when set, will override the :layout option given via
use Phoenix.LiveView

	The :layout option returned on mount, via {:ok, socket, layout: ...}
will override any previously set layout option

The LiveView itself will be rendered inside the layout wrapped by
the :container tag.

 Updating document title

Because the root layout from the Plug pipeline is rendered outside of
LiveView, the contents cannot be dynamically changed. The one exception
is the <title> of the HTML document. Phoenix LiveView special cases
the @page_title assign to allow dynamically updating the title of the
page, which is useful when using live navigation, or annotating the browser
tab with a notification. For example, to update the user's notification
count in the browser's title bar, first set the page_title assign on
mount:
def mount(_params, _session, socket) do
 socket = assign(socket, page_title: "Latest Posts")
 {:ok, socket}
end
Then access @page_title in the root layout:
<title><%= @page_title %></title>
You can also use the Phoenix.Component.live_title/1 component to support
adding automatic prefix and suffix to the page title when rendered and
on subsequent updates:
<Phoenix.Component.live_title prefix="MyApp – ">
 <%= assigns[:page_title] || "Welcome" %>
</Phoenix.Component.live_title>
Although the root layout is not updated by LiveView, by simply assigning
to page_title, LiveView knows you want the title to be updated:
def handle_info({:new_messages, count}, socket) do
 {:noreply, assign(socket, page_title: "Latest Posts (#{count} new)")}
end
Note: If you find yourself needing to dynamically patch other parts of the
base layout, such as injecting new scripts or styles into the <head> during
live navigation, then a regular, non-live, page navigation should be used
instead. Assigning the @page_title updates the document.title directly,
and therefore cannot be used to update any other part of the base layout.

Live navigation

LiveView provides functionality to allow page navigation using the
browser's pushState API.
With live navigation, the page is updated without a full page reload.
You can trigger live navigation in two ways:
	From the client - this is done by passing either patch={url} or navigate={url}
to the Phoenix.Component.link/1 component.

	From the server - this is done by Phoenix.LiveView.push_patch/2 or Phoenix.LiveView.push_navigate/2.

For example, instead of writing the following in a template:
<.link href={~p"/pages/#{@page + 1}"}>Next</.link>
You would write:
<.link patch={~p"/pages/#{@page + 1}"}>Next</.link>
Or in a LiveView:
{:noreply, push_patch(socket, to: ~p"/pages/#{@page + 1}")}
The "patch" operations must be used when you want to navigate to the
current LiveView, simply updating the URL and the current parameters,
without mounting a new LiveView. When patch is used, the
handle_params/3 callback is
invoked and the minimal set of changes are sent to the client.
See the next section for more information.
The "navigate" operations must be used when you want to dismount the
current LiveView and mount a new one. You can only "navigate" between
LiveViews in the same session. While redirecting, a phx-loading class
is added to the LiveView, which can be used to indicate to the user a
new page is being loaded.
If you attempt to patch to another LiveView or navigate across live sessions,
a full page reload is triggered. This means your application continues to work,
in case your application structure changes and that's not reflected in the navigation.
Here is a quick breakdown:
	<.link href={...}> and redirect/2
are HTTP-based, work everywhere, and perform full page reloads

	<.link navigate={...}> and push_navigate/2
work across LiveViews in the same session. They mount a new LiveView
while keeping the current layout

	<.link patch={...}> and push_patch/2
updates the current LiveView and sends only the minimal diff while also
maintaining the scroll position

 handle_params/3

The handle_params/3 callback is invoked
after mount/3 and before the initial render.
It is also invoked every time <.link patch={...}>
or push_patch/2 are used.
It receives the request parameters as first argument, the url as second,
and the socket as third.
For example, imagine you have a UserTable LiveView to show all users in
the system and you define it in the router as:
live "/users", UserTable
Now to add live sorting, you could do:
<.link patch={path(~p"/users", sort_by: "name")}>Sort by name</.link>
When clicked, since we are navigating to the current LiveView,
handle_params/3 will be invoked.
Remember you should never trust the received params, so you must use the callback to
validate the user input and change the state accordingly:
def handle_params(params, _uri, socket) do
 socket =
 case params["sort_by"] do
 sort_by when sort_by in ~w(name company) -> assign(socket, sort_by: sort_by)
 _ -> socket
 end

 {:noreply, load_users(socket)}
end
Note we returned {:noreply, socket}, where :noreply means no
additional information is sent to the client. As with other handle_*
callbacks, changes to the state inside
handle_params/3 will trigger
a new server render.
Note the parameters given to handle_params/3
are the same as the ones given to mount/3.
So how do you decide which callback to use to load data?
Generally speaking, data should always be loaded on mount/3,
since mount/3 is invoked once per LiveView life-cycle.
Only the params you expect to be changed via
<.link patch={...}> or
push_patch/2 must be loaded on
handle_params/3.
For example, imagine you have a blog. The URL for a single post is:
"/blog/posts/:post_id". In the post page, you have comments and they are paginated.
You use <.link patch={...}> to update the shown
comments every time the user paginates, updating the URL to "/blog/posts/:post_id?page=X".
In this example, you will access "post_id" on mount/3 and
the page of comments on handle_params/3.

 Replace page address

LiveView also allows the current browser URL to be replaced. This is useful when you
want certain events to change the URL but without polluting the browser's history.
This can be done by passing the <.link replace> option to any of the navigation helpers.

 Multiple LiveViews in the same page

LiveView allows you to have multiple LiveViews in the same page by calling
Phoenix.Component.live_render/3 in your templates. However, only
the LiveViews defined directly in your router can use the "Live Navigation"
functionality described here. This is important because LiveViews work
closely with your router, guaranteeing you can only navigate to known
routes.

Security considerations

LiveView begins its life-cycle as a regular HTTP request. Then a stateful
connection is established. Both the HTTP request and the stateful connection
receive the client data via parameters and session.
This means that any session validation must happen both in the HTTP request
(plug pipeline) and the stateful connection (LiveView mount).

 Authentication vs authorization

When speaking about security, there are two terms commonly used:
authentication and authorization. Authentication is about identifying
a user. Authorization is about telling if a user has access to a certain
resource or feature in the system.
In a regular web application, once a user is authenticated, for example by
entering their email and password, or by using a third-party service such as
Google, Twitter, or Facebook, a token identifying the user is stored in the
session, which is a cookie (a key-value pair) stored in the user's browser.
Every time there is a request, we read the value from the session, and, if
valid, we fetch the user stored in the session from the database. The session
is automatically validated by Phoenix and tools like mix phx.gen.auth can
generate the building blocks of an authentication system for you.
Once the user is authenticated, they may perform many actions on the page,
and some of those actions require specific permissions. This is called
authorization and the specific rules often change per application.
In a regular web application, we perform authentication and authorization
checks on every request. Given LiveViews start as a regular HTTP request,
they share the authentication logic with regular requests through plugs.
Once the user is authenticated, we typically validate the sessions on
the mount callback. Authorization rules generally happen on mount
(for instance, is the user allowed to see this page?) and also on
handle_event (is the user allowed to delete this item?).

 Mounting considerations

The mount/3 callback is invoked both on
the initial HTTP mount and when LiveView is connected. Therefore, any
authorization performed during mount will cover all scenarios.
Once the user is authorized and stored in the session, the logic to fetch the user and further authorize its account needs to happen inside LiveView. For example, if you have the following plugs:
plug :ensure_user_authenticated
plug :ensure_user_confirmed
Then the mount/3 callback of your LiveView
should execute those same verifications:
def mount(_params, %{"user_id" => user_id} = _session, socket) do
 socket = assign(socket, current_user: Accounts.get_user!(user_id))

 socket =
 if socket.assigns.current_user.confirmed_at do
 socket
 else
 redirect(socket, to: "/login")
 end

 {:ok, socket}
end
Beginning with v0.17, LiveView includes the on_mount (Phoenix.LiveView.on_mount/1) hook,
which allows you to encapsulate this logic and execute it on every mount,
as you would with plug:
defmodule MyAppWeb.UserLiveAuth do
 import Phoenix.Component
 import Phoenix.LiveView
 alias MyAppWeb.Accounts # from `mix phx.gen.auth`

 def on_mount(:default, _params, %{"user_token" => user_token} = _session, socket) do
 socket =
 assign_new(socket, :current_user, fn ->
 Accounts.get_user_by_session_token(user_token)
 end)

 if socket.assigns.current_user.confirmed_at do
 {:cont, socket}
 else
 {:halt, redirect(socket, to: "/login")}
 end
 end
end
We use assign_new/3. This is a
convenience to avoid fetching the current_user multiple times across
parent-child LiveViews.
Now we can use the hook whenever relevant. One option is to specify
the hook in your router under live_session:
live_session :default, on_mount: MyAppWeb.UserLiveAuth do
 # Your routes
end
Alternatively, you can either specify the hook directly in the LiveView:
defmodule MyAppWeb.PageLive do
 use MyAppWeb, :live_view
 on_mount MyAppWeb.UserLiveAuth

 ...
end
If you prefer, you can add the hook to def live_view under MyAppWeb,
to run it on all LiveViews by default:
def live_view do
 quote do
 use Phoenix.LiveView,
 layout: {MyAppWeb.Layouts, :app}

 on_mount MyAppWeb.UserLiveAuth
 unquote(html_helpers())
 end
end

 Events considerations

Every time the user performs an action on your system, you should verify if the user
is authorized to do so, regardless if you are using LiveViews or not. For example,
imagine a user can see all projects in a web application, but they may not have
permission to delete any of them. At the UI level, you handle this accordingly
by not showing the delete button in the projects listing, but a savvy user can
directly talk to the server and request a deletion anyway. For this reason, you
must always verify permissions on the server.
In LiveView, most actions are handled by the handle_event callback. Therefore,
you typically authorize the user within those callbacks. In the scenario just
described, one might implement this:
on_mount MyAppWeb.UserLiveAuth

def mount(_params, _session, socket) do
 {:ok, load_projects(socket)}
end

def handle_event("delete_project", %{"project_id" => project_id}, socket) do
 Project.delete!(socket.assigns.current_user, project_id)
 {:noreply, update(socket, :projects, &Enum.reject(&1, fn p -> p.id == project_id end)}
end

defp load_projects(socket) do
 projects = Project.all_projects(socket.assigns.current_user)
 assign(socket, projects: projects)
end
First, we used on_mount to authenticate the user based on the data stored in
the session. Then we load all projects based on the authenticated user. Now,
whenever there is a request to delete a project, we still pass the current user
as argument to the Project context, so it verifies if the user is allowed to
delete it or not. In case it cannot delete, it is fine to just raise an exception.
After all, users are not meant to trigger this code path anyway (unless they are
fiddling with something they are not supposed to!).

 Disconnecting all instances of a live user

So far, the security model between LiveView and regular web applications have
been remarkably similar. After all, we must always authenticate and authorize
every user. The main difference between them happens on logout or when revoking
access.
Because LiveView is a permanent connection between client and server, if a user
is logged out, or removed from the system, this change won't reflect on the
LiveView part unless the user reloads the page.
Luckily, it is possible to address this by setting a live_socket_id in the
session. For example, when logging in a user, you could do:
conn
|> put_session(:current_user_id, user.id)
|> put_session(:live_socket_id, "users_socket:#{user.id}")
Now all LiveView sockets will be identified and listen to the given live_socket_id.
You can then disconnect all live users identified by said ID by broadcasting on
the topic:
MyAppWeb.Endpoint.broadcast("users_socket:#{user.id}", "disconnect", %{})
Note: If you use mix phx.gen.auth to generate your authentication system,
lines to that effect are already present in the generated code. The generated
code uses a user_token instead of referring to the user_id.

Once a LiveView is disconnected, the client will attempt to reestablish
the connection and re-execute the mount/3
callback. In this case, if the user is no longer logged in or it no longer has
access to the current resource, mount/3 will fail and the user will be
redirected.
This is the same mechanism provided by Phoenix.Channels. Therefore, if
your application uses both channels and LiveViews, you can use the same
technique to disconnect any stateful connection.

 live_session and live_redirect

LiveView supports live redirect, which allows users to navigate between
pages over the LiveView connection. Whenever there is a live_redirect,
a new LiveView will be mounted, skipping the regular HTTP requests and
without going through the plug pipeline.
However, if you want to draw stronger boundaries between parts of your
application, you can also use Phoenix.LiveView.Router.live_session/2
to group your live routes. This can be handy because you can only
live_redirect between LiveViews in the same live_session.
For example, imagine you need to authenticate two distinct types of users.
Your regular users login via email and password, and you have an admin
dashboard that uses http auth. You can specify different live_sessions
for each authentication flow:
live_session :default do
 scope "/" do
 pipe_through [:authenticate_user]
 get ...
 live ...
 end
end

live_session :admin do
 scope "/admin" do
 pipe_through [:http_auth_admin]
 get ...
 live ...
 end
end
Now every time you try to navigate to an admin panel, and out of it,
a regular page navigation will happen and a brand new live connection
will be established.
Once again, it is worth remembering that LiveViews require their own
security checks, so we use pipe_through above to protect the regular
routes (get, post, etc.) and the LiveViews should run their own checks
using on_mount hooks.
live_session can also be used to enforce each LiveView group has
a different root layout, since layouts are not updated between live
redirects:
live_session :default, root_layout: {Layouts, :root} do
 ...
end

live_session :admin, root_layout: {Layouts, :admin} do
 ...
end
Finally, you can even combine live_session with on_mount. Instead
of declaring on_mount on every LiveView, you can declare it at the
router level and it will enforce it on all LiveViews under it:
live_session :default, on_mount: MyAppWeb.UserLiveAuth do
 scope "/" do
 pipe_through [:authenticate_user]
 live ...
 end
end

live_session :admin, on_mount: MyAppWeb.AdminLiveAuth do
 scope "/admin" do
 pipe_through [:authenticate_admin]
 live ...
 end
end
Each live route under the :default live_session will invoke
the MyAppWeb.UserLiveAuth hook on mount. This module was defined
earlier in this guide. We will also pipe regular web requests through
:authenticate_user, which must execute the same checks as
MyAppWeb.UserLiveAuth, but tailored to plug.
Similarly, the :admin live_session has its own authentication
flow, powered by MyAppWeb.AdminLiveAuth. It also defines a plug
equivalent named :authenticate_admin, which will be used by any
regular request. If there are no regular web requests defined under
a live session, then the pipe_through checks are not necessary.
Declaring the on_mount on live_session is exactly the same as
declaring it in each LiveView. It will be executed every time a
LiveView is mounted, even after live_redirects.

 Summing up

The important concepts to keep in mind are:
	Your authentication logic (logging the user in) is typically part of
your regular web request pipeline and it is shared by both controllers
and LiveViews. Authentication then stores the user information in the
session. Regular web requests use plug to read the user from a session,
LiveViews read it inside an on_mount callback. This is typically a
single database lookup on both cases. Running mix phx.gen.auth sets
up all that is necessary

	Once authenticated, your authorization logic in LiveViews will happen
both during mount (such as "can the user see this page?") and during
events (like "can the user delete this item?"). Those rules are often
domain/business specific, and typically happen in your context modules.
This is also a requirement for regular requests and responses

	live_session can be used to draw boundaries between groups of
LiveViews. While you could use live_session to draw lines between
different authorization rules, doing so would lead to frequent page
reloads. For this reason, we typically use live_session to enforce
different authentication requirements or whenever you need to
change root layouts

Telemetry

LiveView currently exposes the following telemetry events:
	[:phoenix, :live_view, :mount, :start] - Dispatched by a Phoenix.LiveView
immediately before mount/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params | :not_mounted_at_router,
 session: map,
 uri: String.t() | nil
}

	[:phoenix, :live_view, :mount, :stop] - Dispatched by a Phoenix.LiveView
when the mount/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params | :not_mounted_at_router,
 session: map,
 uri: String.t() | nil
}

	[:phoenix, :live_view, :mount, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the mount/3 callback.
	Measurement: %{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 params: unsigned_params | :not_mounted_at_router,
 session: map,
 uri: String.t() | nil
}

	[:phoenix, :live_view, :handle_params, :start] - Dispatched by a Phoenix.LiveView
immediately before handle_params/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_params, :stop] - Dispatched by a Phoenix.LiveView
when the handle_params/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_params, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the handle_params/3 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_event, :start] - Dispatched by a Phoenix.LiveView
immediately before handle_event/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_view, :handle_event, :stop] - Dispatched by a Phoenix.LiveView
when the handle_event/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_view, :handle_event, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the handle_event/3 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_view, :render, :start] - Dispatched by a Phoenix.LiveView
immediately before render/1 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 force?: boolean,
 changed?: boolean
}

	[:phoenix, :live_view, :render, :stop] - Dispatched by a Phoenix.LiveView
when the render/1 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 force?: boolean,
 changed?: boolean
}

	[:phoenix, :live_view, :render, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the render/1 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 force?: boolean,
 changed?: boolean
}

	[:phoenix, :live_component, :update, :start] - Dispatched by a Phoenix.LiveComponent
immediately before update/2 or a
update_many/1 is invoked.
In the case ofupdate/2 it might dispatch one event
for multiple calls.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 assigns_sockets: [{map(), Phoenix.LiveView.Socket.t}]
}

	[:phoenix, :live_component, :update, :stop] - Dispatched by a Phoenix.LiveComponent
when the update/2 or a
update_many/1 callback completes successfully.
In the case ofupdate/2 it might dispatch one event
for multiple calls. The sockets metadata contain the updated sockets.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 assigns_sockets: [{map(), Phoenix.LiveView.Socket.t}],
 sockets: [Phoenix.LiveView.Socket.t]
}

	[:phoenix, :live_component, :update, :exception] - Dispatched by a Phoenix.LiveComponent
when an exception is raised in the update/2 or a
update_many/1 callback.
In the case ofupdate/2 it might dispatch one event
for multiple calls.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 component: atom,
 assigns_sockets: [{map(), Phoenix.LiveView.Socket.t}]
}

	[:phoenix, :live_component, :handle_event, :start] - Dispatched by a Phoenix.LiveComponent
immediately before handle_event/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_component, :handle_event, :stop] - Dispatched by a Phoenix.LiveComponent
when the handle_event/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_component, :handle_event, :exception] - Dispatched by a Phoenix.LiveComponent
when an exception is raised in the handle_event/3 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

Uploads

LiveView supports interactive file uploads with progress for
both direct to server uploads as well as direct-to-cloud
external uploads on the client.

 Built-in Features

	Accept specification - Define accepted file types, max
number of entries, max file size, etc. When the client
selects file(s), the file metadata is automatically
validated against the specification. See
Phoenix.LiveView.allow_upload/3.

	Reactive entries - Uploads are populated in an
@uploads assign in the socket. Entries automatically
respond to progress, errors, cancellation, etc.

	Drag and drop - Use the phx-drop-target attribute to
enable. See Phoenix.Component.live_file_input/1.

 Allow uploads

You enable an upload, typically on mount, via allow_upload/3:
@impl Phoenix.LiveView
def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: ~w(.jpg .jpeg), max_entries: 2)}
end
That's it for now! We will come back to the LiveView to
implement some form- and upload-related callbacks later, but
most of the functionality around uploads takes place in the
template.

 Render reactive elements

Use the Phoenix.Component.live_file_input/1 component
to render a file input for the upload:
<%!-- lib/my_app_web/live/upload_live.html.heex --%>

<form id="upload-form" phx-submit="save" phx-change="validate">
 <.live_file_input upload={@uploads.avatar} />
 <button type="submit">Upload</button>
</form>
Important: You must bind phx-submit and phx-change on the form.

Note that while live_file_input/1
allows you to set additional attributes on the file input,
many attributes such as id, accept, and multiple will
be set automatically based on the allow_upload/3 spec.
Reactive updates to the template will occur as the end-user
interacts with the file input.

 Upload entries

Uploads are populated in an @uploads assign in the socket.
Each allowed upload contains a list of entries,
irrespective of the :max_entries value in the
allow_upload/3 spec. These entry structs contain all the
information about an upload, including progress, client file
info, errors, etc.
Let's look at an annotated example:
<%!-- lib/my_app_web/live/upload_live.html.heex --%>

<%!-- use phx-drop-target with the upload ref to enable file drag and drop --%>
<section phx-drop-target={@uploads.avatar.ref}>

<%!-- render each avatar entry --%>
<%= for entry <- @uploads.avatar.entries do %>
 <article class="upload-entry">

 <figure>
 <.live_img_preview entry={entry} />
 <figcaption><%= entry.client_name %></figcaption>
 </figure>

 <%!-- entry.progress will update automatically for in-flight entries --%>
 <progress value={entry.progress} max="100"> <%= entry.progress %>% </progress>

 <%!-- a regular click event whose handler will invoke Phoenix.LiveView.cancel_upload/3 --%>
 <button type="button" phx-click="cancel-upload" phx-value-ref={entry.ref} aria-label="cancel">×</button>

 <%!-- Phoenix.Component.upload_errors/2 returns a list of error atoms --%>
 <%= for err <- upload_errors(@uploads.avatar, entry) do %>
 <p class="alert alert-danger"><%= error_to_string(err) %></p>
 <% end %>

 </article>
<% end %>

<%!-- Phoenix.Component.upload_errors/1 returns a list of error atoms --%>
<%= for err <- upload_errors(@uploads.avatar) do %>
 <p class="alert alert-danger"><%= error_to_string(err) %></p>
<% end %>

</section>
The section element in the example acts as the
phx-drop-target for the :avatar upload. Users can interact
with the file input or they can drop files over the element
to add new entries.
Upload entries are created when a file is added to the form
input and each will exist until it has been consumed,
following a successfully completed upload.

 Entry validation

Validation occurs automatically based on any conditions
that were specified in allow_upload/3 however, as
mentioned previously you are required to bind phx-change
on the form in order for the validation to be performed.
Therefore you must implement at least a minimal callback:
@impl Phoenix.LiveView
def handle_event("validate", _params, socket) do
 {:noreply, socket}
end
Entries for files that do not match the allow_upload/3
spec will contain errors. Use
Phoenix.Component.upload_errors/2 and your own
helper function to render a friendly error message:
defp error_to_string(:too_large), do: "Too large"
defp error_to_string(:not_accepted), do: "You have selected an unacceptable file type"
For error messages that affect all entries, use
Phoenix.Component.upload_errors/1, and your own
helper function to render a friendly error message:
defp error_to_string(:too_many_files), do: "You have selected too many files"

 Cancel an entry

Upload entries may also be canceled, either programmatically
or as a result of a user action. For instance, to handle the
click event in the template above, you could do the following:
@impl Phoenix.LiveView
def handle_event("cancel-upload", %{"ref" => ref}, socket) do
 {:noreply, cancel_upload(socket, :avatar, ref)}
end

 Consume uploaded entries

When the end-user submits a form containing a live_file_input/1,
the JavaScript client first uploads the file(s) before
invoking the callback for the form's phx-submit event.
Within the callback for the phx-submit event, you invoke
the Phoenix.LiveView.consume_uploaded_entries/3 function
to process the completed uploads, persisting the relevant
upload data alongside the form data:
@impl Phoenix.LiveView
def handle_event("save", _params, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
 dest = Path.join(Application.app_dir(:my_app, "priv/static/uploads"), Path.basename(path))
 # You will need to create `priv/static/uploads` for `File.cp!/2` to work.
 File.cp!(path, dest)
 {:ok, ~p"/uploads/#{Path.basename(dest)}"}
 end)

 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
end
Note: While client metadata cannot be trusted, max file size validations
are enforced as each chunk is received when performing direct to server uploads.

This example writes the file directly to disk, under the priv folder.
In order to access your upload, for example in an tag, you need
to add the uploads directory to static_paths/0. In a vanilla Phoenix
project, this is found in lib/my_app_web.ex.
Another thing to be aware of is that in development, changes to
priv/static/uploads will be picked up by live_reload. This means that as
soon as your upload succeeds, your app will be reloaded in the browser. This
can be temporarily disabled by setting code_reloader: false in config/dev.exs.
Besides the above, this approach also has limitations in production. If you are
running multiple instances of your application, the uploaded file will be stored
only in one of the instances. Any request routed to the other machine will
ultimately fail.
For these reasons, it is best if uploads are stored elsewhere, such as the
database (depending on the size and contents) or a separate storage service.
For more information on implementing client-side, direct-to-cloud uploads,
see the External uploads guide for details.

 Appendix A: UploadLive

A complete example of the LiveView from this guide:
lib/my_app_web/live/upload_live.ex
defmodule MyAppWeb.UploadLive do
 use MyAppWeb, :live_view

 @impl Phoenix.LiveView
 def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: ~w(.jpg .jpeg), max_entries: 2)}
 end

 @impl Phoenix.LiveView
 def handle_event("validate", _params, socket) do
 {:noreply, socket}
 end

 @impl Phoenix.LiveView
 def handle_event("cancel-upload", %{"ref" => ref}, socket) do
 {:noreply, cancel_upload(socket, :avatar, ref)}
 end

 @impl Phoenix.LiveView
 def handle_event("save", _params, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
 dest = Path.join([:code.priv_dir(:my_app), "static", "uploads", Path.basename(path)])
 # You will need to create `priv/static/uploads` for `File.cp!/2` to work.
 File.cp!(path, dest)
 {:ok, ~p"/uploads/#{Path.basename(dest)}"}
 end)

 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
 end

 defp error_to_string(:too_large), do: "Too large"
 defp error_to_string(:too_many_files), do: "You have selected too many files"
 defp error_to_string(:not_accepted), do: "You have selected an unacceptable file type"
end
To access your uploads via your app, make sure to add uploads to
MyAppWeb.static_paths/0.

Gettext for internationalization

For internationalization with gettext,
you must call Gettext.put_locale/2 on the LiveView mount callback to instruct
the LiveView which locale should be used for rendering the page.
However, one question that has to be answered is how to retrieve the locale in
the first place. There are many approaches to solve this problem:
	The locale could be stored in the URL as a parameter
	The locale could be stored in the session
	The locale could be stored in the database

We will briefly cover these approaches to provide some direction.

 Locale from parameters

You can say all URLs have a locale parameter. In your router:
scope "/:locale" do
 live ...
 get ...
end
Accessing a page without a locale should automatically redirect
to a URL with locale (the best locale could be fetched from
HTTP headers, which is outside of the scope of this guide).
Then, assuming all URLs have a locale, you can set the Gettext
locale accordingly:
def mount(%{"locale" => locale}, _session, socket) do
 Gettext.put_locale(MyApp.Gettext, locale)
 {:ok, socket}
end
You can also use the on_mount hook to
automatically restore the locale for every LiveView in your application:
defmodule MyAppWeb.RestoreLocale do
 def on_mount(:default, %{"locale" => locale}, _session, socket) do
 Gettext.put_locale(MyApp.Gettext, locale)
 {:cont, socket}
 end

 # catch-all case
 def on_mount(:default, _params, _session, socket), do: {:cont, socket}
end
Then, add this hook to def live_view under MyAppWeb, to run it on all
LiveViews by default:
def live_view do
 quote do
 use Phoenix.LiveView,
 layout: {MyAppWeb.Layouts, :app}

 on_mount MyAppWeb.RestoreLocale
 unquote(view_helpers())
 end
end
Note that, because the Gettext locale is not stored in the assigns, if you
want to change the locale, you must use <.link navigate={...} />, instead
of simply patching the page.

 Locale from session

You may also store the locale in the Plug session. For example, in a controller
you might do:
def put_user_session(conn, current_user) do
 Gettext.put_locale(MyApp.Gettext, current_user.locale)

 conn
 |> put_session(:user_id, current_user.id)
 |> put_session(:locale, current_user.locale)
end
and then restore the locale from session within your LiveView mount:
def mount(_params, %{"locale" => locale}, socket) do
 Gettext.put_locale(MyApp.Gettext, locale)
 {:ok, socket}
end
You can also encapsulate this in a hook, as done in the previous section.
However, if the locale is stored in the session, you can only change it
by using regular controller requests. Therefore you should always use
<.link to={...} /> to point to a controller that change the session
accordingly, reloading any LiveView.

 Locale from database

You may also allow users to store their locale configuration in the database.
Then, on mount/3, you can retrieve the user id from the session and load
the locale:
def mount(_params, %{"user_id" => user_id}, socket) do
 user = Users.get_user!(user_id)
 Gettext.put_locale(MyApp.Gettext, user.locale)
 {:ok, socket}
end
In practice, you may end-up mixing more than one approach listed here.
For example, reading from the database is great once the user is logged in
but, before that happens, you may need to store the locale in the session
or in the URL.
Similarly, you can keep the locale in the URL, but change the URL accordingly
to the user preferred locale once they sign in. Hopefully this guide gives
some suggestions on how to move forward and explore the best approach for your
application.

Bindings

Phoenix supports DOM element bindings for client-server interaction. For
example, to react to a click on a button, you would render the element:
<button phx-click="inc_temperature">+</button>
Then on the server, all LiveView bindings are handled with the handle_event
callback, for example:
def handle_event("inc_temperature", _value, socket) do
 {:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end
	Binding	Attributes
	Params	phx-value-*
	Click Events	phx-click, phx-click-away
	Form Events	phx-change, phx-submit, phx-disable-with, phx-trigger-action, phx-auto-recover
	Focus Events	phx-blur, phx-focus, phx-window-blur, phx-window-focus
	Key Events	phx-keydown, phx-keyup, phx-window-keydown, phx-window-keyup, phx-key
	Scroll Events	phx-viewport-top, phx-viewport-bottom
	DOM Patching	phx-mounted, phx-update, phx-remove
	JS Interop	phx-hook
	Lifecycle Events	phx-connected, phx-disconnected
	Rate Limiting	phx-debounce, phx-throttle
	Static tracking	phx-track-static

 Click Events

The phx-click binding is used to send click events to the server.
When any client event, such as a phx-click click is pushed, the value
sent to the server will be chosen with the following priority:
	The :value specified in Phoenix.LiveView.JS.push/3, such as:
<div phx-click={JS.push("inc", value: %{myvar1: @val1})}>

	Any number of optional phx-value- prefixed attributes, such as:
<div phx-click="inc" phx-value-myvar1="val1" phx-value-myvar2="val2">
will send the following map of params to the server:
def handle_event("inc", %{"myvar1" => "val1", "myvar2" => "val2"}, socket) do
If the phx-value- prefix is used, the server payload will also contain a "value"
if the element's value attribute exists.

	The payload will also include any additional user defined metadata of the client event.
For example, the following LiveSocket client option would send the coordinates and
altKey information for all clicks:
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 click: (e, el) => {
 return {
 altKey: e.altKey,
 clientX: e.clientX,
 clientY: e.clientY
 }
 }
 }
})

The phx-click-away event is fired when a click event happens outside of the element.
This is useful for hiding toggled containers like drop-downs.

 Focus and Blur Events

Focus and blur events may be bound to DOM elements that emit
such events, using the phx-blur, and phx-focus bindings, for example:
<input name="email" phx-focus="myfocus" phx-blur="myblur"/>
To detect when the page itself has received focus or blur,
phx-window-focus and phx-window-blur may be specified. These window
level events may also be necessary if the element in consideration
(most often a div with no tabindex) cannot receive focus. Like other
bindings, phx-value-* can be provided on the bound element, and those
values will be sent as part of the payload. For example:
<div class="container"
 phx-window-focus="page-active"
 phx-window-blur="page-inactive"
 phx-value-page="123">
 ...
</div>

 Key Events

The onkeydown, and onkeyup events are supported via the phx-keydown,
and phx-keyup bindings. Each binding supports a phx-key attribute, which triggers
the event for the specific key press. If no phx-key is provided, the event is triggered
for any key press. When pushed, the value sent to the server will contain the "key"
that was pressed, plus any user-defined metadata. For example, pressing the
Escape key looks like this:
%{"key" => "Escape"}
To capture additional user-defined metadata, the metadata option for keydown events
may be provided to the LiveSocket constructor. For example:
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 keydown: (e, el) => {
 return {
 key: e.key,
 metaKey: e.metaKey,
 repeat: e.repeat
 }
 }
 }
})
To determine which key has been pressed you should use key value. The
available options can be found on
MDN
or via the Key Event Viewer.
Note: phx-keyup and phx-keydown are not supported on inputs.
Instead use form bindings, such as phx-change, phx-submit, etc.
Note: it is possible for certain browser features like autofill to trigger key events
with no "key" field present in the value map sent to the server. For this reason, we
recommend always having a fallback catch-all event handler for LiveView key bindings.
By default, the bound element will be the event listener, but a
window-level binding may be provided via phx-window-keydown or phx-window-keyup,
for example:
def render(assigns) do
 ~H"""
 <div id="thermostat" phx-window-keyup="update_temp">
 Current temperature: <%= @temperature %>
 </div>
 """
end

def handle_event("update_temp", %{"key" => "ArrowUp"}, socket) do
 {:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end

def handle_event("update_temp", %{"key" => "ArrowDown"}, socket) do
 {:ok, new_temp} = Thermostat.dec_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end

def handle_event("update_temp", _, socket) do
 {:noreply, socket}
end

 Rate limiting events with Debounce and Throttle

All events can be rate-limited on the client by using the
phx-debounce and phx-throttle bindings, with the exception of the phx-blur
binding, which is fired immediately.
Rate limited and debounced events have the following behavior:
	phx-debounce - Accepts either an integer timeout value (in milliseconds),
or "blur". When an integer is provided, emitting the event is delayed by
the specified milliseconds. When "blur" is provided, emitting the event is
delayed until the field is blurred by the user. When the value is omitted
a default of 300ms is used. Debouncing is typically used for input elements.

	phx-throttle - Accepts an integer timeout value to throttle the event in milliseconds.
Unlike debounce, throttle will immediately emit the event, then rate limit it at once
per provided timeout. When the value is omitted a default of 300ms is used.
Throttling is typically used to rate limit clicks, mouse and keyboard actions.

For example, to avoid validating an email until the field is blurred, while validating
the username at most every 2 seconds after a user changes the field:
<form phx-change="validate" phx-submit="save">
 <input type="text" name="user[email]" phx-debounce="blur"/>
 <input type="text" name="user[username]" phx-debounce="2000"/>
</form>
And to rate limit a volume up click to once every second:
<button phx-click="volume_up" phx-throttle="1000">+</button>
Likewise, you may throttle held-down keydown:
<div phx-window-keydown="keydown" phx-throttle="500">
 ...
</div>
Unless held-down keys are required, a better approach is generally to use
phx-keyup bindings which only trigger on key up, thereby being self-limiting.
However, phx-keydown is useful for games and other use cases where a constant
press on a key is desired. In such cases, throttle should always be used.

 Debounce and Throttle special behavior

The following specialized behavior is performed for forms and keydown bindings:
	When a phx-submit, or a phx-change for a different input is triggered,
any current debounce or throttle timers are reset for existing inputs.

	A phx-keydown binding is only throttled for key repeats. Unique keypresses
back-to-back will dispatch the pressed key events.

 JS Commands

LiveView bindings support a JavaScript command interface via the Phoenix.LiveView.JS module, which allows you to specify utility operations that execute on the client when firing phx- binding events, such as phx-click, phx-change, etc. Commands compose together to allow you to push events, add classes to elements, transition elements in and out, and more.
See the Phoenix.LiveView.JS documentation for full usage.
For a small example of what's possible, imagine you want to show and hide a modal on the page without needing to make the round trip to the server to render the content:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.show(to: "#modal", transition: "fade-in")}>
 show modal
</button>

<button phx-click={JS.hide(to: "#modal", transition: "fade-out")}>
 hide modal
</button>

<button phx-click={JS.toggle(to: "#modal", in: "fade-in", out: "fade-out")}>
 toggle modal
</button>
Or if your UI library relies on classes to perform the showing or hiding:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.add_class("show", to: "#modal", transition: "fade-in")}>
 show modal
</button>

<button phx-click={JS.remove_class("show", to: "#modal", transition: "fade-out")}>
 hide modal
</button>
Commands compose together. For example, you can push an event to the server and
immediately hide the modal on the client:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.push("modal-closed") |> JS.remove_class("show", to: "#modal", transition: "fade-out")}>
 hide modal
</button>
It is also useful to extract commands into their own functions:
alias Phoenix.LiveView.JS

def hide_modal(js \\ %JS{}, selector) do
 js
 |> JS.push("modal-closed")
 |> JS.remove_class("show", to: selector, transition: "fade-out")
end
<button phx-click={hide_modal("#modal")}>hide modal</button>
The Phoenix.LiveView.JS.push/3 command is particularly powerful in allowing you to customize the event being pushed to the server. For example, imagine you start with a familiar phx-click which pushes a message to the server when clicked:
<button phx-click="clicked">click</button>
Now imagine you want to customize what happens when the "clicked" event is pushed, such as which component should be targeted, which element should receive CSS loading state classes, etc. This can be accomplished with options on the JS push command. For example:
<button phx-click={JS.push("clicked", target: @myself, loading: ".container")}>click</button>
See Phoenix.LiveView.JS.push/3 for all supported options.

 DOM patching

A container can be marked with phx-update to configure how the DOM
is updated. The following values are supported:
	replace - the default operation. Replaces the element with the contents

	stream - supports stream operations. Streams are used to manage large
collections in the UI without having to store the collection on the server

	ignore - ignores updates to the DOM regardless of new content changes.
This is useful for client-side interop with existing libraries that do
their own DOM operations

When using phx-update, a unique DOM ID must always be set in the
container. If using "stream", a DOM ID must also be set
for each child. When inserting stream elements containing an
ID already present in the container, LiveView will replace the existing
element with the new content. See Phoenix.LiveView.stream/3 for more
information.
The "ignore" behaviour is frequently used when you need to integrate
with another JS library. Updates from the server to the element's content
and attributes are ignored, except for data attributes. Changes, additions,
and removals from the server to data attributes are merged with the ignored
element which can be used to pass data to the JS handler.
To react to elements being mounted to the DOM, the phx-mounted binding
can be used. For example, to animate an element on mount:
<div phx-mounted={JS.transition("animate-ping", time: 500)}>
If phx-mounted is used on the initial page render, it will be invoked only
after the initial WebSocket connection is established.
To react to elements being removed from the DOM, the phx-remove binding
may be specified, which can contain a Phoenix.LiveView.JS command to execute.
The phx-remove command is only executed for the removed parent element.
It does not cascade to children.

 Lifecycle Events

LiveView supports the phx-connected and phx-disconnected bindings to react
to connection lifecycle events with JS commands. For example, to show an element
when the LiveView has lost its connection and hide it when the connection
recovers:
<div id="status" class="hidden" phx-disconnected={JS.show()} phx-connected={JS.hide()}>
 Attempting to reconnect...
</div>
phx-connected and phx-disconnected are only executed when operating
inside a LiveView container. For static templates, they will have no effect.

 LiveView Specific Events

The lv: event prefix supports LiveView specific features that are handled
by LiveView without calling the user's handle_event/3 callbacks. Today,
the following events are supported:
	lv:clear-flash – clears the flash when sent to the server. If a
phx-value-key is provided, the specific key will be removed from the flash.

For example:
<p class="alert" phx-click="lv:clear-flash" phx-value-key="info">
 <%= Phoenix.Flash.get(@flash, :info) %>
</p>

 Loading states and errors

All phx- event bindings apply their own CSS classes when pushed. For example
the following markup:
<button phx-click="clicked" phx-window-keydown="key">...</button>
On click, would receive the phx-click-loading class, and on keydown would receive
the phx-keydown-loading class. The CSS loading classes are maintained until an
acknowledgement is received on the client for the pushed event.
In the case of forms, when a phx-change is sent to the server, the input element
which emitted the change receives the phx-change-loading class, along with the
parent form tag. The following events receive CSS loading classes:
	phx-click - phx-click-loading
	phx-change - phx-change-loading
	phx-submit - phx-submit-loading
	phx-focus - phx-focus-loading
	phx-blur - phx-blur-loading
	phx-window-keydown - phx-keydown-loading
	phx-window-keyup - phx-keyup-loading

Additionally, the following classes are applied to the LiveView's parent
container:
	"phx-connected" - applied when the view has connected to the server
	"phx-loading" - applied when the view is not connected to the server
	"phx-error" - applied when an error occurs on the server. Note, this
class will be applied in conjunction with "phx-loading" if connection
to the server is lost.

For navigation related loading states (both automatic and manual), see phx-page-loading as described in
JavaScript interoperability: Live navigation events.

 Scroll Events and Infinite Stream pagination

The phx-viewport-top and phx-viewport-bottom bindings allow you to detect when a container's
first child reaches the top of the viewport, or the last child reaches the bottom of the viewport.
This is useful for infinite scrolling where you want to send paging events for the next results set or previous results set as the user is scrolling up and down and reaches the top or bottom of the viewport.
Generally, applications will add padding above and below a container when performing infinite scrolling to allow smooth scrolling as results are loaded. Combined with Phoenix.LiveView.stream/3, the phx-viewport-top and phx-viewport-bottom allow for infinite virtualized list that only keeps a small set of actual elements in the DOM. For example:
def mount(_, _, socket) do
 {:ok,
 socket
 |> assign(page: 1, per_page: 20)
 |> paginate_posts(1)}
end

defp paginate_posts(socket, new_page) when new_page >= 1 do
 %{per_page: per_page, page: cur_page} = socket.assigns
 posts = Blog.list_posts(offset: (new_page - 1) * per_page, limit: per_page)

 {posts, at, limit} =
 if new_page >= cur_page do
 {posts, -1, per_page * 3 * -1}
 else
 {Enum.reverse(posts), 0, per_page * 3}
 end

 case posts do
 [] ->
 assign(socket, end_of_timeline?: at == -1)

 [_ | _] = posts ->
 socket
 |> assign(end_of_timeline?: false)
 |> assign(:page, new_page)
 |> stream(:posts, posts, at: at, limit: limit)
 end
end
Our paginate_posts function fetches a page of posts, and determines if the user is paging to a previous page or next page. Based on the direction of paging, the stream is either prepended to, or appended to with at of 0 or -1 respectively. We also set the limit of the stream to three times the per_page to allow enough posts in the UI to appear as an infinite list, but small enough to maintain UI performance. We also set an @end_of_timeline? assign to track whether the user is at the end of results or not. Finally, we update the @page assign and posts stream. We can then wire up our container to support the viewport events:
<ul
 id="posts"
 phx-update="stream"
 phx-viewport-top={@page > 1 && "prev-page"}
 phx-viewport-bottom={!@end_of_timeline? && "next-page"}
 phx-page-loading
 class={[
 if(@end_of_timeline?, do: "pb-10", else: "pb-[calc(200vh)]"),
 if(@page == 1, do: "pt-10", else: "pt-[calc(200vh)]")
]}
>
 <li :for={{id, post} <- @streams.posts} id={id}>
 <.post_card post={post} />

<div :if={@end_of_timeline?} class="mt-5 text-[50px] text-center">
 🎉 You made it to the beginning of time 🎉
</div>
There's not much here, but that's the point! This little snippet of UI is driving a fully virtualized list with bidirectional infinite scrolling. We use the phx-viewport-top binding to send the "prev-page" event to the LiveView, but only if the user is beyond the first page. It doesn't make sense to load negative page results, so we remove the binding entirely in those cases. Next, we wire up phx-viewport-bottom to send the "next-page" event, but only if we've yet to reach the end of the timeline. Finally, we conditionally apply some CSS classes which sets a large top and bottom padding to twice the viewport height based on the current pagination for smooth scrolling.
To complete our solution, we only need to handle the "prev-page" and "next-page" events in the LiveView:
def handle_event("next-page", _, socket) do
 {:noreply, paginate_posts(socket, socket.assigns.page + 1)}
end

def handle_event("prev-page", %{"_overran" => true}, socket) do
 {:noreply, paginate_posts(socket, 1)}
end

def handle_event("prev-page", _, socket) do
 if socket.assigns.page > 1 do
 {:noreply, paginate_posts(socket, socket.assigns.page - 1)}
 else
 {:noreply, socket}
 end
end
This code simply calls the paginate_posts function we defined as our first step, using the current or next page to drive the results. Notice that we match on a special "_overran" => true parameter in our "prev-page" event. The viewport events send this parameter when the user has "overran" the viewport top or bottom. Imagine the case where the user is scrolling back up through many pages of results, but grabs the scrollbar and returns immediately to the top of the page. This means our <ul id="posts"> container was overrun by the top of the viewport, and we need to reset the the UI to page the first page.

Form bindings

 Form Events

To handle form changes and submissions, use the phx-change and phx-submit
events. In general, it is preferred to handle input changes at the form level,
where all form fields are passed to the LiveView's callback given any
single input change. For example, to handle real-time form validation and
saving, your form would use both phx-change and phx-submit bindings.
Let's get started with an example:
<.form for={@form} phx-change="validate" phx-submit="save">
 <.input type="text" field={@form[:username]} />
 <.input type="email" field={@form[:email]} />
 <button>Save</button>
</.form>
.form is the function component defined in Phoenix.Component.form/1,
we recommend reading its documentation for more details on how it works
and all supported options. .form expects a @form assign, which can
be created from a changeset or user parameters via Phoenix.Component.to_form/1.
input/1 is a function component for rendering inputs, most often
defined in your own application, often encapsulating labelling,
error handling, and more. Here is a simple version to get started with:
attr :field, Phoenix.HTML.FormField
attr :rest, :global, include: ~w(type)
def input(assigns) do
 ~H"""
 <input id={@field.id} name={@field.name} value={@field.value} {@rest} />
 """
end

 The CoreComponents module

If your application was generated with Phoenix v1.7, then mix phx.new
automatically imports many ready-to-use function components, such as
.input component with built-in features and styles.

With the form rendered, your LiveView picks up the events in handle_event
callbacks, to validate and attempt to save the parameter accordingly:
def render(assigns) ...

def mount(_params, _session, socket) do
 {:ok, assign(socket, form: to_form(Accounts.change_user(%User{})))}
end

def handle_event("validate", %{"user" => params}, socket) do
 form =
 %User{}
 |> Accounts.change_user(params)
 |> to_form(action: :validate)

 {:noreply, assign(socket, form: form)}
end

def handle_event("save", %{"user" => user_params}, socket) do
 case Accounts.create_user(user_params) do
 {:ok, user} ->
 {:noreply,
 socket
 |> put_flash(:info, "user created")
 |> redirect(to: ~p"/users/#{user}")}

 {:error, %Ecto.Changeset{} = changeset} ->
 {:noreply, assign(socket, form: to_form(changeset))}
 end
end
The validate callback simply updates the changeset based on all form input
values, then convert the changeset to a form and assign it to the socket.
If the form changes, such as generating new errors, render/1
is invoked and the form is re-rendered.
Likewise for phx-submit bindings, the same callback is invoked and
persistence is attempted. On success, a :noreply tuple is returned and the
socket is annotated for redirect with Phoenix.LiveView.redirect/2 to
the new user page, otherwise the socket assigns are updated with the errored
changeset to be re-rendered for the client.
You may wish for an individual input to use its own change event or to target
a different component. This can be accomplished by annotating the input itself
with phx-change, for example:
<.form for={@form} phx-change="validate" phx-submit="save">
 ...
 <.input field={@form[:email]} phx-change="email_changed" phx-target={@myself} />
</.form>
Then your LiveView or LiveComponent would handle the event:
def handle_event("email_changed", %{"user" => %{"email" => email}}, socket) do
 ...
end
Note: only the individual input is sent as params for an input marked with phx-change.

 Error Feedback

For proper error feedback on form updates, LiveView sends special parameters on form events
starting with _unused_ to indicate that the input for the specific field has not been interacted with yet.
When creating a form from these parameters through Phoenix.Component.to_form/2 or Phoenix.Component.form/1,
Phoenix.Component.used_input?/1 can be used to filter error messages.
For example, your MyAppWeb.CoreComponents may use this function:
def input(%{field: %Phoenix.HTML.FormField{} = field} = assigns) do
 errors = if Phoenix.Component.used_input?(field), do: field.errors, else: []

 assigns
 |> assign(field: nil, id: assigns.id || field.id)
 |> assign(:errors, Enum.map(field.errors, &translate_error(&1)))
 |> assign(:errors, Enum.map(errors, &translate_error(&1)))
Now, only errors for fields that were interacted with are shown.

 Number inputs

Number inputs are a special case in LiveView forms. On programmatic updates,
some browsers will clear invalid inputs. So LiveView will not send change events
from the client when an input is invalid, instead allowing the browser's native
validation UI to drive user interaction. Once the input becomes valid, change and
submit events will be sent normally.
<input type="number">
This is known to have a plethora of problems including accessibility, large numbers
are converted to exponential notation, and scrolling can accidentally increase or
decrease the number.
One alternative is the inputmode attribute, which may serve your application's needs
and users much better. According to Can I Use?,
the following is supported by 86% of the global market (as of Sep 2021):
<input type="text" inputmode="numeric" pattern="[0-9]*">

 Password inputs

Password inputs are also special cased in Phoenix.HTML. For security reasons,
password field values are not reused when rendering a password input tag. This
requires explicitly setting the :value in your markup, for example:
<.input field={f[:password]} value={input_value(f[:password].value)} />
<.input field={f[:password_confirmation]} value={input_value(f[:password_confirmation].value)} />

 Nested inputs

Nested inputs are handled using .inputs_for function component. By default
it will add the necessary hidden input fields for tracking ids of Ecto associations.
<.inputs_for :let={fp} field={f[:friends]}>
 <.input field={fp[:name]} type="text" />
</.inputs_for>

 File inputs

LiveView forms support reactive file inputs,
including drag and drop support via the phx-drop-target
attribute:
<div class="container" phx-drop-target={@uploads.avatar.ref}>
 ...
 <.live_file_input upload={@uploads.avatar} />
</div>
See Phoenix.Component.live_file_input/1 for more.

 Submitting the form action over HTTP

The phx-trigger-action attribute can be added to a form to trigger a standard
form submit on DOM patch to the URL specified in the form's standard action
attribute. This is useful to perform pre-final validation of a LiveView form
submit before posting to a controller route for operations that require
Plug session mutation. For example, in your LiveView template you can
annotate the phx-trigger-action with a boolean assign:
<.form :let={f} for={@changeset}
 action={~p"/users/reset_password"}
 phx-submit="save"
 phx-trigger-action={@trigger_submit}>
Then in your LiveView, you can toggle the assign to trigger the form with the current
fields on next render:
def handle_event("save", params, socket) do
 case validate_change_password(socket.assigns.user, params) do
 {:ok, changeset} ->
 {:noreply, assign(socket, changeset: changeset, trigger_submit: true)}

 {:error, changeset} ->
 {:noreply, assign(socket, changeset: changeset)}
 end
end
Once phx-trigger-action is true, LiveView disconnects and then submits the form.

 Recovery following crashes or disconnects

By default, all forms marked with phx-change and having id
attribute will recover input values automatically after the user has
reconnected or the LiveView has remounted after a crash. This is
achieved by the client triggering the same phx-change to the server
as soon as the mount has been completed.
Note: if you want to see form recovery working in development, please
make sure to disable live reloading in development by commenting out the
LiveReload plug in your endpoint.ex file or by setting code_reloader: false
in your config/dev.exs. Otherwise live reloading may cause the current page
to be reloaded whenever you restart the server, which will discard all form
state.
For most use cases, this is all you need and form recovery will happen
without consideration. In some cases, where forms are built step-by-step in a
stateful fashion, it may require extra recovery handling on the server outside
of your existing phx-change callback code. To enable specialized recovery,
provide a phx-auto-recover binding on the form to specify a different event
to trigger for recovery, which will receive the form params as usual. For example,
imagine a LiveView wizard form where the form is stateful and built based on what
step the user is on and by prior selections:
<form id="wizard" phx-change="validate_wizard_step" phx-auto-recover="recover_wizard">
On the server, the "validate_wizard_step" event is only concerned with the
current client form data, but the server maintains the entire state of the wizard.
To recover in this scenario, you can specify a recovery event, such as "recover_wizard"
above, which would wire up to the following server callbacks in your LiveView:
def handle_event("validate_wizard_step", params, socket) do
 # regular validations for current step
 {:noreply, socket}
end

def handle_event("recover_wizard", params, socket) do
 # rebuild state based on client input data up to the current step
 {:noreply, socket}
end
To forgo automatic form recovery, set phx-auto-recover="ignore".

 Resetting Forms

To reset a LiveView form, you can use the standard type="reset" on a
form button or input. When clicked, the form inputs will be reset to their
original values.
After the form is reset, a phx-change event is emitted with the _target param
containing the reset name. For example, the following element:
<form phx-change="changed">
 ...
 <button type="reset" name="reset">Reset</button>
</form>
Can be handled on the server differently from your regular change function:
def handle_event("changed", %{"_target" => ["reset"]} = params, socket) do
 # handle form reset
end

def handle_event("changed", params, socket) do
 # handle regular form change
end

 JavaScript client specifics

The JavaScript client is always the source of truth for current input values.
For any given input with focus, LiveView will never overwrite the input's current
value, even if it deviates from the server's rendered updates. This works well
for updates where major side effects are not expected, such as form validation
errors, or additive UX around the user's input values as they fill out a form.
For these use cases, the phx-change input does not concern itself with disabling
input editing while an event to the server is in flight. When a phx-change event
is sent to the server, the input tag and parent form tag receive the
phx-change-loading CSS class, then the payload is pushed to the server with a
"_target" param in the root payload containing the keyspace of the input name
which triggered the change event.
For example, if the following input triggered a change event:
<input name="user[username]"/>
The server's handle_event/3 would receive a payload:
%{"_target" => ["user", "username"], "user" => %{"username" => "Name"}}
The phx-submit event is used for form submissions where major side effects
typically happen, such as rendering new containers, calling an external
service, or redirecting to a new page.
On submission of a form bound with a phx-submit event:
	The form's inputs are set to readonly
	Any submit button on the form is disabled
	The form receives the "phx-submit-loading" class

On completion of server processing of the phx-submit event:
	The submitted form is reactivated and loses the "phx-submit-loading" class
	The last input with focus is restored (unless another input has received focus)
	Updates are patched to the DOM as usual

To handle latent events, the <button> tag of a form can be annotated with
phx-disable-with, which swaps the element's innerText with the provided
value during event submission. For example, the following code would change
the "Save" button to "Saving...", and restore it to "Save" on acknowledgment:
<button type="submit" phx-disable-with="Saving...">Save</button>
You may also take advantage of LiveView's CSS loading state classes to
swap out your form content while the form is submitting. For example,
with the following rules in your app.css:
.while-submitting { display: none; }
.inputs { display: block; }

.phx-submit-loading .while-submitting { display: block; }
.phx-submit-loading .inputs { display: none; }
You can show and hide content with the following markup:
<form phx-change="update">
 <div class="while-submitting">Please wait while we save our content...</div>
 <div class="inputs">
 <input type="text" name="text" value={@text}>
 </div>
</form>
Additionally, we strongly recommend including a unique HTML "id" attribute on the form.
When DOM siblings change, elements without an ID will be replaced rather than moved,
which can cause issues such as form fields losing focus.

 Triggering phx- form events with JavaScript

Often it is desirable to trigger an event on a DOM element without explicit
user interaction on the element. For example, a custom form element such as a
date picker or custom select input which utilizes a hidden input element to
store the selected state.
In these cases, the event functions on the DOM API can be used, for example
to trigger a phx-change event:
document.getElementById("my-select").dispatchEvent(
 new Event("input", {bubbles: true})
)
When using a client hook, this.el can be used to determine the element as
outlined in the "Client hooks" documentation.
It is also possible to trigger a phx-submit using a "submit" event:
document.getElementById("my-form").dispatchEvent(
 new Event("submit", {bubbles: true, cancelable: true})
)

JavaScript interoperability

To enable LiveView client/server interaction, we instantiate a LiveSocket. For example:
import {Socket} from "phoenix"
import {LiveSocket} from "phoenix_live_view"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}})
liveSocket.connect()
All options are passed directly to the Phoenix.Socket constructor,
except for the following LiveView specific options:
	bindingPrefix - the prefix to use for phoenix bindings. Defaults "phx-"
	params - the connect_params to pass to the view's mount callback. May be
a literal object or closure returning an object. When a closure is provided,
the function receives the view's element.
	hooks – a reference to a user-defined hooks namespace, containing client
callbacks for server/client interop. See the Client hooks
section below for details.
	uploaders – a reference to a user-defined uploaders namespace, containing
client callbacks for client-side direct-to-cloud uploads. See the
External uploads guide for details.

 Debugging Client Events

To aid debugging on the client when troubleshooting issues, the enableDebug()
and disableDebug() functions are exposed on the LiveSocket JavaScript instance.
Calling enableDebug() turns on debug logging which includes LiveView life-cycle and
payload events as they come and go from client to server. In practice, you can expose
your instance on window for quick access in the browser's web console, for example:
// app.js
let liveSocket = new LiveSocket(...)
liveSocket.connect()
window.liveSocket = liveSocket

// in the browser's web console
>> liveSocket.enableDebug()
The debug state uses the browser's built-in sessionStorage, so it will remain in effect
for as long as your browser session lasts.

 Simulating Latency

Proper handling of latency is critical for good UX. LiveView's CSS loading states allow
the client to provide user feedback while awaiting a server response. In development,
near zero latency on localhost does not allow latency to be easily represented or tested,
so LiveView includes a latency simulator with the JavaScript client to ensure your
application provides a pleasant experience. Like the enableDebug() function above,
the LiveSocket instance includes enableLatencySim(milliseconds) and disableLatencySim()
functions which apply throughout the current browser session. The enableLatencySim function
accepts an integer in milliseconds for the round-trip-time to the server. For example:
// app.js
let liveSocket = new LiveSocket(...)
liveSocket.connect()
window.liveSocket = liveSocket

// in the browser's web console
>> liveSocket.enableLatencySim(1000)
[Log] latency simulator enabled for the duration of this browser session.
 Call disableLatencySim() to disable

 Event listeners

LiveView emits several events to the browsers and allows developers to submit
their own events too.

 Live navigation events

For live page navigation via <.link navigate={...}> and <.link patch={...}>,
their server-side equivalents push_navigate and push_patch, as well as form
submits via phx-submit, the JavaScript events "phx:page-loading-start" and
"phx:page-loading-stop" are dispatched on window. Additionally, any phx-
event may dispatch page loading events by annotating the DOM element with
phx-page-loading. This is useful for showing main page loading status, for example:
// app.js
import topbar from "topbar"
window.addEventListener("phx:page-loading-start", info => topbar.show())
window.addEventListener("phx:page-loading-stop", info => topbar.hide())
Within the callback, info.detail will be an object that contains a kind
key, with a value that depends on the triggering event:
	"redirect" - the event was triggered by a redirect
	"patch" - the event was triggered by a patch
	"initial" - the event was triggered by initial page load
	"element" - the event was triggered by a phx- bound element, such as phx-click
	"error" - the event was triggered by an error, such as a view crash or socket disconnection

For all kinds of page loading events, all but "element" will receive an additional to
key in the info metadata pointing to the href associated with the page load.
In the case of an "element" page loading event, the info will contain a
"target" key containing the DOM element which triggered the page loading
state.
A lower level phx:navigate event is also triggered any time the browser's URL bar
is programmatically changed by Phoenix or the user navigation forward or back. The
info.detail will contain the following information:
	"href" - the location the URL bar was navigated to.
	"patch" - the boolean flag indicating this was a patch navigation.
	"pop" - the boolean flag indication this was a navigation via popstate
from a user navigation forward or back in history.

 Handling server-pushed events

When the server uses Phoenix.LiveView.push_event/3, the event name
will be dispatched in the browser with the phx: prefix. For example,
imagine the following template where you want to highlight an existing
element from the server to draw the user's attention:
<div id={"item-#{item.id}"} class="item">
 <%= item.title %>
</div>
Next, the server can issue a highlight using the standard push_event:
def handle_info({:item_updated, item}, socket) do
 {:noreply, push_event(socket, "highlight", %{id: "item-#{item.id}"})}
end
Finally, a window event listener can listen for the event and conditionally
execute the highlight command if the element matches:
let liveSocket = new LiveSocket(...)
window.addEventListener("phx:highlight", (e) => {
 let el = document.getElementById(e.detail.id)
 if(el) {
 // logic for highlighting
 }
})
If you desire, you can also integrate this functionality with Phoenix'
JS commands, executing JS commands for the given element whenever highlight
is triggered. First, update the element to embed the JS command into a data
attribute:
<div id={"item-#{item.id}"} class="item" data-highlight={JS.transition("highlight")}>
 <%= item.title %>
</div>
Now, in the event listener, use LiveSocket.execJS to trigger all JS
commands in the new attribute:
let liveSocket = new LiveSocket(...)
window.addEventListener("phx:highlight", (e) => {
 document.querySelectorAll(`[data-highlight]`).forEach(el => {
 if(el.id == e.detail.id){
 liveSocket.execJS(el, el.getAttribute("data-highlight"))
 }
 })
})

 Client hooks via phx-hook

To handle custom client-side JavaScript when an element is added, updated,
or removed by the server, a hook object may be provided via phx-hook.
phx-hook must point to an object with the following life-cycle callbacks:
	mounted - the element has been added to the DOM and its server
LiveView has finished mounting
	beforeUpdate - the element is about to be updated in the DOM.
Note: any call here must be synchronous as the operation cannot
be deferred or cancelled.
	updated - the element has been updated in the DOM by the server
	destroyed - the element has been removed from the page, either
by a parent update, or by the parent being removed entirely
	disconnected - the element's parent LiveView has disconnected from the server
	reconnected - the element's parent LiveView has reconnected to the server

Note: When using hooks outside the context of a LiveView, mounted is the only
callback invoked, and only those elements on the page at DOM ready will be tracked.
For dynamic tracking of the DOM as elements are added, removed, and updated, a LiveView
should be used.
The above life-cycle callbacks have in-scope access to the following attributes:
	el - attribute referencing the bound DOM node
	liveSocket - the reference to the underlying LiveSocket instance
	pushEvent(event, payload, (reply, ref) => ...) - method to push an event from the client to the LiveView server
	pushEventTo(selectorOrTarget, event, payload, (reply, ref) => ...) - method to push targeted events from the client
to LiveViews and LiveComponents. It sends the event to the LiveComponent or LiveView the selectorOrTarget is
defined in, where its value can be either a query selector or an actual DOM element. If the query selector returns
more than one element it will send the event to all of them, even if all the elements are in the same LiveComponent
or LiveView. pushEventTo supports passing the node element e.g. this.el instead of selector e.g. "#" + this.el.id
as the first parameter for target.
	handleEvent(event, (payload) => ...) - method to handle an event pushed from the server
	upload(name, files) - method to inject a list of file-like objects into an uploader.
	uploadTo(selectorOrTarget, name, files) - method to inject a list of file-like objects into an uploader.
The hook will send the files to the uploader with name defined by allow_upload/3
on the server-side. Dispatching new uploads triggers an input change event which will be sent to the
LiveComponent or LiveView the selectorOrTarget is defined in, where its value can be either a query selector or an
actual DOM element. If the query selector returns more than one live file input, an error will be logged.

For example, the markup for a controlled input for phone-number formatting could be written
like this:
<input type="text" name="user[phone_number]" id="user-phone-number" phx-hook="PhoneNumber" />
Then a hook callback object could be defined and passed to the socket:
/**
 * @type {Object.<string, import("phoenix_live_view").ViewHook>}
 */
let Hooks = {}
Hooks.PhoneNumber = {
 mounted() {
 this.el.addEventListener("input", e => {
 let match = this.el.value.replace(/\D/g, "").match(/^(\d{3})(\d{3})(\d{4})$/)
 if(match) {
 this.el.value = `${match[1]}-${match[2]}-${match[3]}`
 }
 })
 }
}

let liveSocket = new LiveSocket("/live", Socket, {hooks: Hooks, ...})
...
Note: when using phx-hook, a unique DOM ID must always be set.
For integration with client-side libraries which require a broader access to full
DOM management, the LiveSocket constructor accepts a dom option with an
onBeforeElUpdated callback. The fromEl and toEl DOM nodes are passed to the
function just before the DOM patch operations occurs in LiveView. This allows external
libraries to (re)initialize DOM elements or copy attributes as necessary as LiveView
performs its own patch operations. The update operation cannot be cancelled or deferred,
and the return value is ignored.
For example, the following option could be used to guarantee that some attributes set on the client-side are kept intact:
...
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 hooks: Hooks,
 dom: {
 onBeforeElUpdated(from, to) {
 for (const attr of from.attributes) {
 if (attr.name.startsWith("data-js-")) {
 to.setAttribute(attr.name, attr.value);
 }
 }
 }
 }
}
In the example above, all attributes starting with data-js- won't be replaced when the DOM is patched by LiveView.

 Client-server communication

A hook can push events to the LiveView by using the pushEvent function and receive a
reply from the server via a {:reply, map, socket} return value. The reply payload will be
passed to the optional pushEvent response callback.
Communication with the hook from the server can be done by reading data attributes on the
hook element or by using Phoenix.LiveView.push_event/3 on the server and handleEvent on the client.
For example, to implement infinite scrolling, one can pass the current page using data attributes:
<div id="infinite-scroll" phx-hook="InfiniteScroll" data-page={@page}>
And then in the client:
/**
 * @type {import("phoenix_live_view").ViewHook}
 */
Hooks.InfiniteScroll = {
 page() { return this.el.dataset.page },
 mounted(){
 this.pending = this.page()
 window.addEventListener("scroll", e => {
 if(this.pending == this.page() && scrollAt() > 90){
 this.pending = this.page() + 1
 this.pushEvent("load-more", {})
 }
 })
 },
 updated(){ this.pending = this.page() }
}
However, the data attribute approach is not a good approach if you need to frequently push data to the client. To push out-of-band events to the client, for example to render charting points, one could do:
<div id="chart" phx-hook="Chart">
{:noreply, push_event(socket, "points", %{points: new_points})}
And then on the client:
/**
 * @type {import("phoenix_live_view").ViewHook}
 */
Hooks.Chart = {
 mounted(){
 this.handleEvent("points", ({points}) => MyChartLib.addPoints(points))
 }
}
Events pushed from the server via push_event are global and will be dispatched
to all active hooks on the client who are handling that event. If you need to scope events
(for example when pushing from a live component that has siblings on the current live view),
then this must be done by namespacing them:
def update(%{id: id, points: points} = assigns, socket) do
 socket =
 socket
 |> assign(assigns)
 |> push_event("points-#{id}", points)

 {:ok, socket}
end
And then on the client:
Hooks.Chart = {
 mounted(){
 this.handleEvent(`points-${this.el.id}`, (points) => MyChartLib.addPoints(points));
 }
}
Note: In case a LiveView pushes events and renders content, handleEvent callbacks are invoked after the page is updated. Therefore, if the LiveView redirects at the same time it pushes events, callbacks won't be invoked on the old page's elements. Callbacks would be invoked on the redirected page's newly mounted hook elements.

External uploads

This guide continues from the configuration started in the
server Uploads guide.

Uploads to external cloud providers, such as Amazon S3,
Google Cloud, etc., can be achieved by using the
:external option in allow_upload/3.
You provide a 2-arity function to allow the server to
generate metadata for each upload entry, which is passed to
a user-specified JavaScript function on the client.
Typically when your function is invoked, you will generate a
pre-signed URL, specific to your cloud storage provider, that
will provide temporary access for the end-user to upload data
directly to your cloud storage.

 Chunked HTTP Uploads

For any service that supports large file
uploads via chunked HTTP requests with Content-Range
headers, you can use the UpChunk JS library by Mux to do all
the hard work of uploading the file. For small file uploads
or to get started quickly, consider uploading directly to S3
instead.
You only need to wire the UpChunk instance to the LiveView
UploadEntry callbacks, and LiveView will take care of the rest.
Install UpChunk by
saving its contents
to assets/vendor/upchunk.js or by installing it with npm:
$ npm install --prefix assets --save @mux/upchunk

Configure your uploader on Phoenix.LiveView.mount/3:
def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: :any, max_entries: 3, external: &presign_upload/2)}
end
Supply the :external option to
Phoenix.LiveView.allow_upload/3. It requires a 2-arity
function that generates a signed URL where the client will
push the bytes for the upload entry. This function must
return either {:ok, meta, socket} or {:error, meta, socket},
where meta must be a map.
For example, if you were using a context that provided a
start_session
function, you might write something like this:
defp presign_upload(entry, socket) do
 {:ok, %{"Location" => link}} =
 SomeTube.start_session(%{
 "uploadType" => "resumable",
 "x-upload-content-length" => entry.client_size
 })

 {:ok, %{uploader: "UpChunk", entrypoint: link}, socket}
end
Finally, on the client-side, we use UpChunk to create an
upload from the temporary URL generated on the server and
attach listeners for its events to the entry's callbacks:
import * as UpChunk from "@mux/upchunk"

let Uploaders = {}

Uploaders.UpChunk = function(entries, onViewError){
 entries.forEach(entry => {
 // create the upload session with UpChunk
 let { file, meta: { entrypoint } } = entry
 let upload = UpChunk.createUpload({ endpoint: entrypoint, file })

 // stop uploading in the event of a view error
 onViewError(() => upload.pause())

 // upload error triggers LiveView error
 upload.on("error", (e) => entry.error(e.detail.message))

 // notify progress events to LiveView
 upload.on("progress", (e) => {
 if(e.detail < 100){ entry.progress(e.detail) }
 })

 // success completes the UploadEntry
 upload.on("success", () => entry.progress(100))
 })
}

// Don't forget to assign Uploaders to the liveSocket
let liveSocket = new LiveSocket("/live", Socket, {
 uploaders: Uploaders,
 params: {_csrf_token: csrfToken}
})

 Direct to S3

The largest object that can be uploaded to S3 in a single PUT is 5 GB
according to S3 FAQ. For larger file
uploads, consider using chunking as shown above.
This guide assumes an existing S3 bucket is set up with the correct CORS configuration
which allows uploading directly to the bucket.
An example CORS config is:
[
 {
 "AllowedHeaders": ["*"],
 "AllowedMethods": ["PUT", "POST"],
 "AllowedOrigins": ["*"],
 "ExposeHeaders": []
 }
]
You may put your domain in the "allowedOrigins" instead. More information on configuring CORS for
S3 buckets is available on AWS.
In order to enforce all of your file constraints when uploading to S3,
it is necessary to perform a multipart form POST with your file data.
You should have the following S3 information ready before proceeding:
	aws_access_key_id
	aws_secret_access_key
	bucket_name
	region

We will first implement the LiveView portion:
def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: :any, max_entries: 3, external: &presign_upload/2)}
end

defp presign_upload(entry, socket) do
 uploads = socket.assigns.uploads
 bucket = "phx-upload-example"
 key = "public/#{entry.client_name}"

 config = %{
 region: "us-east-1",
 access_key_id: System.fetch_env!("AWS_ACCESS_KEY_ID"),
 secret_access_key: System.fetch_env!("AWS_SECRET_ACCESS_KEY")
 }

 {:ok, fields} =
 SimpleS3Upload.sign_form_upload(config, bucket,
 key: key,
 content_type: entry.client_type,
 max_file_size: uploads[entry.upload_config].max_file_size,
 expires_in: :timer.hours(1)
)

 meta = %{uploader: "S3", key: key, url: "http://#{bucket}.s3-#{config.region}.amazonaws.com", fields: fields}
 {:ok, meta, socket}
end
Here, we implemented a presign_upload/2 function, which we passed as a
captured anonymous function to :external. It generates a pre-signed URL
for the upload and returns our :ok result, with a payload of metadata
for the client, along with our unchanged socket.
Next, we add a missing module SimpleS3Upload to generate pre-signed URLs
for S3. Create a file called simple_s3_upload.ex. Get the file's content
from this zero-dependency module called SimpleS3Upload
written by Chris McCord.
Tip: if you encounter errors with the :crypto module or with S3 blocking ACLs,
please read the comments in the gist above for solutions.

Next, we add our JavaScript client-side uploader. The metadata must contain the
:uploader key, specifying the name of the JavaScript client-side uploader.
In this case, it's "S3", as shown above.
Add a new file uploaders.js in the following directory assets/js/ next to app.js.
The content for this S3 client uploader:
let Uploaders = {}

Uploaders.S3 = function(entries, onViewError){
 entries.forEach(entry => {
 let formData = new FormData()
 let {url, fields} = entry.meta
 Object.entries(fields).forEach(([key, val]) => formData.append(key, val))
 formData.append("file", entry.file)
 let xhr = new XMLHttpRequest()
 onViewError(() => xhr.abort())
 xhr.onload = () => xhr.status === 204 ? entry.progress(100) : entry.error()
 xhr.onerror = () => entry.error()
 xhr.upload.addEventListener("progress", (event) => {
 if(event.lengthComputable){
 let percent = Math.round((event.loaded / event.total) * 100)
 if(percent < 100){ entry.progress(percent) }
 }
 })

 xhr.open("POST", url, true)
 xhr.send(formData)
 })
}

export default Uploaders;
We define an Uploaders.S3 function, which receives our entries. It then
performs an AJAX request for each entry, using the entry.progress() and
entry.error() functions to report upload events back to the LiveView.
The name of the uploader must match the one we return on the :uploader
metadata in LiveView.
Finally, head over to app.js and add the uploaders: Uploaders key to
the LiveSocket constructor to tell phoenix where to find the uploaders returned
within the external metadata.
// for uploading to S3
import Uploaders from "./uploaders"

let liveSocket = new LiveSocket("/live",
 Socket, {
 params: {_csrf_token: csrfToken},
 uploaders: Uploaders
 }
)
Now "S3" returned from the server will match the one in the client.
To debug client-side JavaScript when trying to upload, you can inspect your
browser and look at the console or networks tab to view the error logs.

 Direct to S3-Compatible

This section assumes that you installed and configured ExAws
and ExAws.S3 correctly in your project and can execute
the examples in the page without errors.

Most S3 compatible platforms like Cloudflare R2 don't support POST when
uploading files so we need to use PUT with a signed URL instead of the
signed POSTand send the file straight to the service, to do so we need to
change the presign_upload/2 function and the Uploaders.S3 that does the upload.
The new presign_upload/2:
def presign_upload(entry, socket) do
 config = ExAws.Config.new(:s3)
 bucket = "bucket"
 key = "public/#{entry.client_name}"

 {:ok, url} =
 ExAws.S3.presigned_url(config, :put, bucket, key,
 expires_in: 3600,
 query_params: [{"Content-Type", entry.client_type}]
)
 {:ok, %{uploader: "S3", key: key, url: url}, socket}
end
The new Uploaders.S3:
Uploaders.S3 = function (entries, onViewError) {
 entries.forEach(entry => {
 let xhr = new XMLHttpRequest()
 onViewError(() => xhr.abort())
 xhr.onload = () => xhr.status === 200 ? entry.progress(100) : entry.error()
 xhr.onerror = () => entry.error()

 xhr.upload.addEventListener("progress", (event) => {
 if(event.lengthComputable){
 let percent = Math.round((event.loaded / event.total) * 100)
 if(percent < 100){ entry.progress(percent) }
 }
 })

 let url = entry.meta.url
 xhr.open("PUT", url, true)
 xhr.send(entry.file)
 })
}

<code class="inline">phx-</code> HTML attributes

A summary of special HTML attributes used in Phoenix LiveView templates.
Each attribute is linked to its documentation for more details.

 Event Handlers

Attribute values can be:
	An event name for the handle_event server callback
	JS commands to be executed directly on the client

Use phx-value-* attributes to pass params to the server.

Use phx-debounce and phx-throttle to control the frequency of events.

 Click

	Attributes
	phx-click phx-click-away

 Focus

	Attributes
	phx-blur phx-focus
	phx-window-blur phx-window-focus

 Keyboard

	Attributes
	phx-keydown phx-keyup
	phx-window-keydown phx-window-keyup

Use the phx-key attribute to listen to specific keys.

 Scroll

	Attributes
	phx-viewport-top phx-viewport-bottom

 Example

lib/hello_web/live/hello_live.html.heex
<button type="button" phx-click="click" phx-value-user={@current_user.id}>Click Me</button>
<button type="button" phx-click={JS.toggle(to: "#example")}>Toggle</button>

 Form Event Handlers

 On <form> elements

	Attribute	Value
	phx-change	Event name or JS commands
	phx-submit	Event name or JS commands
	phx-auto-recover	Event name, JS commands or "ignore"
	phx-trigger-action	true or false

 On <button> elements

	Attribute	Value
	phx-disable-with	Text to show during event submission

 Form Example

lib/hello_web/live/hello_live.html.heex
<form phx-change="validate" phx-submit="save">
 <input type="text" name="name" phx-debounce="500" phx-throttle="500" />
 <button type="submit" phx-disable-with="Saving...">Save</button>
</form>

 Socket Connection Lifecycle

	Attribute	Value
	phx-connected	JS commands executed after the LiveSocket connects
	phx-disconnected	JS commands executed after the LiveSocket disconnects

lib/hello_web/live/hello_live.html.heex
<div id="status" class="hidden" phx-disconnected={JS.show()} phx-connected={JS.hide()}>
 Attempting to reconnect...
</div>

 DOM Element Lifecycle

	Attribute	Value
	phx-mounted	JS commands executed after the element is mounted
	phx-remove	JS commands executed during the element removal
	phx-update	"replace" (default), "stream" or "ignore", configures DOM patching behavior

lib/hello_web/live/hello_live.html.heex
<div
 id="iframe-container"
 phx-mounted={JS.transition("animate-bounce", time: 2000)}
 phx-remove={JS.hide(transition: {"transition-all transform ease-in duration-200", "opacity-100", "opacity-0"})}
>
 <button type="button" phx-click={JS.exec("phx-remove", to: "#iframe-container")}>Hide</button>
 <iframe id="iframe" src="https://example.com" phx-update="ignore"></iframe>
</div>

 Client Hooks

	Attribute	Value
	phx-hook	The name of a previously defined JavaScript hook in the LiveSocket

Client hooks provide bidirectional communication between client and server using
this.pushEvent and this.handleEvent to send and receive events.
lib/hello_web/live/hello_live.html.heex
<div id="example" phx-hook="Example">
 <h1>Events</h1>
 <ul id="example-events">
</div>
assets/js/app.js
let Hooks = {}
Hooks.Example = {
 // Callbacks
 mounted() { this.appendEvent("Mounted") },
 beforeUpdate() { this.appendEvent("Before Update") },
 updated() { this.appendEvent("Updated") },
 destroyed() { this.appendEvent("Destroyed") },
 disconnected() { this.appendEvent("Disconnected") },
 reconnected() { this.appendEvent("Reconnected") },

 // Custom Helper
 appendEvent(name) {
 console.log(name)
 let li = document.createElement("li")
 li.innerText = name
 this.el.querySelector("#example-events").appendChild(li)
 }
}

let liveSocket = new LiveSocket("/live", Socket, {hooks: Hooks})

 Tracking Static Assets

	Attribute	Value
	phx-track-static	None, used to annotate static files

lib/hello_web/components/layouts/root.html.heex
<link phx-track-static rel="stylesheet" href={~p"/assets/app.css"} />
<script defer phx-track-static type="text/javascript" src={~p"/assets/app.js"}>

Phoenix.Component

Define reusable function components with HEEx templates.
A function component is any function that receives an assigns
map as an argument and returns a rendered struct built with
the ~H sigil:
defmodule MyComponent do
 # In Phoenix apps, the line is typically: use MyAppWeb, :html
 use Phoenix.Component

 def greet(assigns) do
 ~H"""
 <p>Hello, <%= @name %>!</p>
 """
 end
end
This function uses the ~H sigil to return a rendered template.
~H stands for HEEx (HTML + EEx). HEEx is a template language for
writing HTML mixed with Elixir interpolation. We can write Elixir
code inside HEEx using <%= ... %> tags and we use @name to
access the key name defined inside assigns.
When invoked within a ~H sigil or HEEx template file:
<MyComponent.greet name="Jane" />
The following HTML is rendered:
<p>Hello, Jane!</p>
If the function component is defined locally, or its module is imported,
then the caller can invoke the function directly without specifying the module:
<.greet name="Jane" />
For dynamic values, you can interpolate Elixir expressions into a function component:
<.greet name={@user.name} />
Function components can also accept blocks of HEEx content (more on this later):
<.card>
 <p>This is the body of my card!</p>
</.card>
In this module we will learn how to build rich and composable components to
use in our applications.

 Attributes

Phoenix.Component provides the attr/3 macro to declare what attributes the proceeding function
component expects to receive when invoked:
attr :name, :string, required: true

def greet(assigns) do
 ~H"""
 <p>Hello, <%= @name %>!</p>
 """
end
By calling attr/3, it is now clear that greet/1 requires a string attribute called name
present in its assigns map to properly render. Failing to do so will result in a compilation
warning:
<MyComponent.greet />
 <!-- warning: missing required attribute "name" for component MyAppWeb.MyComponent.greet/1
 lib/app_web/my_component.ex:15 -->
Attributes can provide default values that are automatically merged into the assigns map:
attr :name, :string, default: "Bob"
Now you can invoke the function component without providing a value for name:
<.greet />
Rendering the following HTML:
<p>Hello, Bob!</p>
Accessing an attribute which is required and does not have a default value will fail.
You must explicitly declare default: nil or assign a value programmatically with the
assign_new/3 function.
Multiple attributes can be declared for the same function component:
attr :name, :string, required: true
attr :age, :integer, required: true

def celebrate(assigns) do
 ~H"""
 <p>
 Happy birthday <%= @name %>!
 You are <%= @age %> years old.
 </p>
 """
end
Allowing the caller to pass multiple values:
<.celebrate name={"Genevieve"} age={34} />
Rendering the following HTML:
<p>
 Happy birthday Genevieve!
 You are 34 years old.
</p>
Multiple function components can be defined in the same module, with different attributes. In the
following example, <Components.greet/> requires a name, but does not require a title, and
<Components.heading> requires a title, but does not require a name.
defmodule Components do
 # In Phoenix apps, the line is typically: use MyAppWeb, :html
 use Phoenix.Component

 attr :title, :string, required: true

 def heading(assigns) do
 ~H"""
 <h1><%= @title %></h1>
 """
 end

 attr :name, :string, required: true

 def greet(assigns) do
 ~H"""
 <p>Hello <%= @name %></p>
 """
 end
end
With the attr/3 macro you have the core ingredients to create reusable function components.
But what if you need your function components to support dynamic attributes, such as common HTML
attributes to mix into a component's container?

 Global attributes

Global attributes are a set of attributes that a function component can accept when it
declares an attribute of type :global. By default, the set of attributes accepted are those
attributes common to all standard HTML tags.
See Global attributes
for a complete list of attributes.
Once a global attribute is declared, any number of attributes in the set can be passed by
the caller without having to modify the function component itself.
Below is an example of a function component that accepts a dynamic number of global attributes:
attr :message, :string, required: true
attr :rest, :global

def notification(assigns) do
 ~H"""
 <%= @message %>
 """
end
The caller can pass multiple global attributes (such as phx-* bindings or the class attribute):
<.notification message="You've got mail!" class="bg-green-200" phx-click="close" />
Rendering the following HTML:
You've got mail!
Note that the function component did not have to explicitly declare a class or phx-click
attribute in order to render.
Global attributes can define defaults which are merged with attributes provided by the caller.
For example, you may declare a default class if the caller does not provide one:
attr :rest, :global, default: %{class: "bg-blue-200"}
Now you can call the function component without a class attribute:
<.notification message="You've got mail!" phx-click="close" />
Rendering the following HTML:
You've got mail!
Note that the global attribute cannot be provided directly and doing so will emit
a warning. In other words, this is invalid:
<.notification message="You've got mail!" rest={%{"phx-click" => "close"}} />

 Included globals

You may also specify which attributes are included in addition to the known globals
with the :include option. For example to support the form attribute on a button
component:
<.button form="my-form"/>
attr :rest, :global, include: ~w(form)
slot :inner_block
def button(assigns) do
 ~H"""
 <button {@rest}><%= render_slot(@inner_block) %></button>
 """
end
The :include option is useful to apply global additions on a case-by-case basis,
but sometimes you want to extend existing components with new global attributes,
such as Alpine.js' x- prefixes, which we'll outline next.

 Custom global attribute prefixes

You can extend the set of global attributes by providing a list of attribute prefixes to
use Phoenix.Component. Like the default attributes common to all HTML elements,
any number of attributes that start with a global prefix will be accepted by function
components invoked by the current module. By default, the following prefixes are supported:
phx-, aria-, and data-. For example, to support the x- prefix used by
Alpine.js, you can pass the :global_prefixes option to
use Phoenix.Component:
use Phoenix.Component, global_prefixes: ~w(x-)
In your Phoenix application, this is typically done in your
lib/my_app_web.ex file, inside the def html definition:
def html do
 quote do
 use Phoenix.Component, global_prefixes: ~w(x-)
 # ...
 end
end
Now all function components invoked by this module will accept any number of attributes
prefixed with x-, in addition to the default global prefixes.
You can learn more about attributes by reading the documentation for attr/3.

 Slots

In addition to attributes, function components can accept blocks of HEEx content, referred to
as slots. Slots enable further customization of the rendered HTML, as the caller can pass the
function component HEEx content they want the component to render. Phoenix.Component provides
the slot/3 macro used to declare slots for function components:
slot :inner_block, required: true

def button(assigns) do
 ~H"""
 <button>
 <%= render_slot(@inner_block) %>
 </button>
 """
end
The expression render_slot(@inner_block) renders the HEEx content. You can invoke this function
component like so:
<.button>
 This renders inside the button!
</.button>
Which renders the following HTML:
<button>
 This renders inside the button!
</button>
Like the attr/3 macro, using the slot/3 macro will provide compile-time validations.
For example, invoking button/1 without a slot of HEEx content will result in a compilation
warning being emitted:
<.button />
 <!-- warning: missing required slot "inner_block" for component MyAppWeb.MyComponent.button/1
 lib/app_web/my_component.ex:15 -->

 The default slot

The example above uses the default slot, accessible as an assign named @inner_block, to render
HEEx content via the render_slot/1 function.
If the values rendered in the slot need to be dynamic, you can pass a second value back to the
HEEx content by calling render_slot/2:
slot :inner_block, required: true

attr :entries, :list, default: []

def unordered_list(assigns) do
 ~H"""

 <%= for entry <- @entries do %>
 <%= render_slot(@inner_block, entry) %>
 <% end %>

 """
end
When invoking the function component, you can use the special attribute :let to take the value
that the function component passes back and bind it to a variable:
<.unordered_list :let={fruit} entries={~w(apples bananas cherries)}>
 I like <%= fruit %>!
</.unordered_list>
Rendering the following HTML:

 I like apples!
 I like bananas!
 I like cherries!

Now the separation of concerns is maintained: the caller can specify multiple values in a list
attribute without having to specify the HEEx content that surrounds and separates them.

 Named slots

In addition to the default slot, function components can accept multiple, named slots of HEEx
content. For example, imagine you want to create a modal that has a header, body, and footer:
slot :header
slot :inner_block, required: true
slot :footer, required: true

def modal(assigns) do
 ~H"""
 <div class="modal">
 <div class="modal-header">
 <%= render_slot(@header) || "Modal" %>
 </div>
 <div class="modal-body">
 <%= render_slot(@inner_block) %>
 </div>
 <div class="modal-footer">
 <%= render_slot(@footer) %>
 </div>
 </div>
 """
end
You can invoke this function component using the named slot HEEx syntax:
<.modal>
 This is the body, everything not in a named slot is rendered in the default slot.
 <:footer>
 This is the bottom of the modal.
 </:footer>
</.modal>
Rendering the following HTML:
<div class="modal">
 <div class="modal-header">
 Modal.
 </div>
 <div class="modal-body">
 This is the body, everything not in a named slot is rendered in the default slot.
 </div>
 <div class="modal-footer">
 This is the bottom of the modal.
 </div>
</div>
As shown in the example above, render_slot/1 returns nil when an optional slot
is declared and none is given. This can be used to attach default behaviour.

 Slot attributes

Unlike the default slot, it is possible to pass a named slot multiple pieces of HEEx content.
Named slots can also accept attributes, defined by passing a block to the slot/3 macro.
If multiple pieces of content are passed, render_slot/2 will merge and render all the values.
Below is a table component illustrating multiple named slots with attributes:
slot :column, doc: "Columns with column labels" do
 attr :label, :string, required: true, doc: "Column label"
end

attr :rows, :list, default: []

def table(assigns) do
 ~H"""
 <table>
 <tr>
 <%= for col <- @column do %>
 <th><%= col.label %></th>
 <% end %>
 </tr>
 <%= for row <- @rows do %>
 <tr>
 <%= for col <- @column do %>
 <td><%= render_slot(col, row) %></td>
 <% end %>
 </tr>
 <% end %>
 </table>
 """
end
You can invoke this function component like so:
<.table rows={[%{name: "Jane", age: "34"}, %{name: "Bob", age: "51"}]}>
 <:column :let={user} label="Name">
 <%= user.name %>
 </:column>
 <:column :let={user} label="Age">
 <%= user.age %>
 </:column>
</.table>
Rendering the following HTML:
<table>
 <tr>
 <th>Name</th>
 <th>Age</th>
 </tr>
 <tr>
 <td>Jane</td>
 <td>34</td>
 </tr>
 <tr>
 <td>Bob</td>
 <td>51</td>
 </tr>
</table>
You can learn more about slots and the slot/3 macro in its documentation.

 Embedding external template files

The embed_templates/1 macro can be used to embed .html.heex files
as function components. The directory path is based on the current
module (__DIR__), and a wildcard pattern may be used to select all
files within a directory tree. For example, imagine a directory listing:
├── components.ex
├── cards
│ ├── pricing_card.html.heex
│ └── features_card.html.heex
Then you can embed the page templates in your components.ex module
and call them like any other function component:
defmodule MyAppWeb.Components do
 use Phoenix.Component

 embed_templates "cards/*"

 def landing_hero(assigns) do
 ~H"""
 <.pricing_card />
 <.features_card />
 """
 end
end
See embed_templates/1 for more information, including declarative
assigns support for embedded templates.

 Debug Annotations

HEEx templates support debug annotations, which are special HTML comments
that wrap around rendered components to help you identify where markup
in your HTML document is rendered within your function component tree.
For example, imagine the following HEEx template:
<.header>
 <.button>Click</.button>
</.header>
The HTML document would receive the following comments when debug annotations
are enabled:
<!-- @caller lib/app_web/home_live.ex:20 -->
<!-- <AppWeb.CoreComponents.header> lib/app_web/core_components.ex:123 -->
<header class="p-5">
 <!-- @caller lib/app_web/home_live.ex:48 -->
 <!-- <AppWeb.CoreComponents.button> lib/app_web/core_components.ex:456 -->
 <button class="px-2 bg-indigo-500 text-white">Click</button>
 <!-- </AppWeb.CoreComponents.button> -->
</header>
<!-- </AppWeb.CoreComponents.header> -->
Debug annotations work across any ~H or .html.heex template.
They can be enabled globally with the following configuration in your
config/dev.exs file:
config :phoenix_live_view, debug_heex_annotations: true
Changing this configuration will require mix clean and a full recompile.

 Summary

 Components

 Phoenix.LiveComponent - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveComponent behaviour

LiveComponents are a mechanism to compartmentalize state, markup, and
events in LiveView.
LiveComponents are defined by using Phoenix.LiveComponent and are used
by calling Phoenix.Component.live_component/1 in a parent LiveView.
They run inside the LiveView process but have their own state and
life-cycle. For this reason, they are also often called "stateful components".
This is a contrast to Phoenix.Component, also known as "function components",
which are stateless and can only compartmentalize markup.
The smallest LiveComponent only needs to define a render/1 function:
defmodule HeroComponent do
 # In Phoenix apps, the line is typically: use MyAppWeb, :live_component
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <div class="hero"><%= @content %></div>
 """
 end
end
A LiveComponent is rendered as:
<.live_component module={HeroComponent} id="hero" content={@content} />
You must always pass the module and id attributes. The id will be
available as an assign and it must be used to uniquely identify the
component. All other attributes will be available as assigns inside the
LiveComponent.
Functional components or live components?
Generally speaking, you should prefer functional components over live
components, as they are a simpler abstraction, with a smaller surface
area. The use case for live components only arises when there is a need
for encapsulating both event handling and additional state.

 Life-cycle

 Mount and update

Live components are identified by the component module and their ID.
We often tie the component ID to some application based ID:
<.live_component module={UserComponent} id={@user.id} user={@user} />
When live_component/1 is called,
mount/1 is called once, when the component is first added to the page. mount/1
receives the socket as argument. Then update/2 is invoked with all of the
assigns given to live_component/1.
If update/2 is not defined all assigns are simply merged into the socket.
The assigns received as the first argument of the update/2
callback will only include the new assigns passed from this function.
Pre-existing assigns may be found in socket.assigns.
After the component is updated, render/1 is called with all assigns.
On first render, we get:
mount(socket) -> update(assigns, socket) -> render(assigns)
On further rendering:
update(assigns, socket) -> render(assigns)
Two live components with the same module and ID are treated as the same component,
regardless of where they are in the page. Therefore, if you change the location
of where a component is rendered within its parent LiveView, it won't be remounted.
This means you can use live components to implement cards and other elements that
can be moved around without losing state. A component is only discarded when the
client observes it is removed from the page.
Finally, the given id is not automatically used as the DOM ID. If you want to set
a DOM ID, it is your responsibility to do so when rendering:
defmodule UserComponent do
 # In Phoenix apps, the line is typically: use MyAppWeb, :live_component
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <div id={"user-\#{@id}"} class="user">
 <%= @user.name %>
 </div>
 """
 end
end

 Events

LiveComponents can also implement the handle_event/3 callback
that works exactly the same as in LiveView. For a client event to
reach a component, the tag must be annotated with a phx-target.
If you want to send the event to yourself, you can simply use the
@myself assign, which is an internal unique reference to the
component instance:

 Say hello!

Note that @myself is not set for stateless components, as they cannot
receive events.
If you want to target another component, you can also pass an ID
or a class selector to any element inside the targeted component.
For example, if there is a UserComponent with the DOM ID of "user-13",
using a query selector, we can send an event to it with:

 Say hello!

In both cases, handle_event/3 will be called with the
"say_hello" event. When handle_event/3 is called for a component,
only the diff of the component is sent to the client, making them
extremely efficient.
Any valid query selector for phx-target is supported, provided that the
matched nodes are children of a LiveView or LiveComponent, for example
to send the close event to multiple components:

 Dismiss

 Update many

Live components also support an optional update_many/1 callback
as an alternative to update/2. While update/2 is called for
each component individually, update_many/1 is called with all
LiveComponents of the same module being currently rendered/updated.
The advantage is that you can preload data from the database using
a single query for all components, instead of running one query per
component.
To provide a more complete understanding of why both callbacks are necessary,
let's see an example. Imagine you are implementing a component and the component
needs to load some state from the database. For example:
<.live_component module={UserComponent} id={user_id} />
A possible implementation would be to load the user on the update/2
callback:
def update(assigns, socket) do
 user = Repo.get!(User, assigns.id)
 {:ok, assign(socket, :user, user)}
end
However, the issue with said approach is that, if you are rendering
multiple user components in the same page, you have a N+1 query problem.
By using update_many/1 instead of update/2 , we receive a list
of all assigns and sockets, allowing us to update many at once:
def update_many(assigns_sockets) do
 list_of_ids = Enum.map(assigns_sockets, fn {assigns, _sockets} -> assigns.id end)

 users =
 from(u in User, where: u.id in ^list_of_ids, select: {u.id, u})
 |> Repo.all()
 |> Map.new()

 Enum.map(assigns_sockets, fn {assigns, socket} ->
 assign(socket, :user, users[assigns.id])
 end)
end
Now only a single query to the database will be made. In fact, the
update_many/1 algorithm is a breadth-first tree traversal, which means
that even for nested components, the amount of queries are kept to
a minimum.
Finally, note that update_many/1 must return an updated list of
sockets in the same order as they are given. If update_many/1 is
defined, update/2 is not invoked.

 Summary

All of the life-cycle events are summarized in the diagram below.
The bubble events in white are triggers that invoke the component.
In blue you have component callbacks, where the underlined names
represent required callbacks:
flowchart LR
 *((start)):::event-.->M
 WE([wait for
parent changes]):::event-.->M
 W([wait for
events]):::event-.->H

 subgraph j__transparent[" "]

 subgraph i[" "]
 direction TB
 M(mount/1
only once):::callback
 M-->U
 M-->UM
 end

 U(update/2):::callback-->A
 UM(update_many/1):::callback-->A

 subgraph j[" "]
 direction TB
 A --> |yes| R
 H(handle_event/3):::callback-->A{any
changes?}:::diamond
 end

 A --> |no| W

 end

 R(render/1):::callback_req-->W

 classDef event fill:#fff,color:#000,stroke:#000
 classDef diamond fill:#FFC28C,color:#000,stroke:#000
 classDef callback fill:#B7ADFF,color:#000,stroke-width:0
 classDef callback_req fill:#B7ADFF,color:#000,stroke-width:0,text-decoration:underline

 Managing state

Now that we have learned how to define and use components, as well as
how to use update_many/1 as a data loading optimization, it is important
to talk about how to manage state in components.
Generally speaking, you want to avoid both the parent LiveView and the
LiveComponent working on two different copies of the state. Instead, you
should assume only one of them to be the source of truth. Let's discuss
the two different approaches in detail.
Imagine a scenario where a LiveView represents a board with each card
in it as a separate LiveComponent. Each card has a form to
allow update of the card title directly in the component, as follows:
defmodule CardComponent do
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <form phx-submit="..." phx-target={@myself}>
 <input name="title"><%= @card.title %></input>
 ...
 </form>
 """
 end

 ...
end
We will see how to organize the data flow to keep either the board LiveView or
the card LiveComponents as the source of truth.

 LiveView as the source of truth

If the board LiveView is the source of truth, it will be responsible
for fetching all of the cards in a board. Then it will call
live_component/1
for each card, passing the card struct as argument to CardComponent:
<%= for card <- @cards do %>
 <.live_component module={CardComponent} card={card} id={card.id} board_id={@id} />
<% end %>
Now, when the user submits the form, CardComponent.handle_event/3
will be triggered. However, if the update succeeds, you must not
change the card struct inside the component. If you do so, the card
struct in the component will get out of sync with the LiveView. Since
the LiveView is the source of truth, you should instead tell the
LiveView that the card was updated.
Luckily, because the component and the view run in the same process,
sending a message from the LiveComponent to the parent LiveView is as
simple as sending a message to self():
defmodule CardComponent do
 ...
 def handle_event("update_title", %{"title" => title}, socket) do
 send self(), {:updated_card, %{socket.assigns.card | title: title}}
 {:noreply, socket}
 end
end
The LiveView then receives this event using Phoenix.LiveView.handle_info/2:
defmodule BoardView do
 ...
 def handle_info({:updated_card, card}, socket) do
 # update the list of cards in the socket
 {:noreply, updated_socket}
 end
end
Because the list of cards in the parent socket was updated, the parent
LiveView will be re-rendered, sending the updated card to the component.
So in the end, the component does get the updated card, but always
driven from the parent.
Alternatively, instead of having the component send a message directly to the
parent view, the component could broadcast the update using Phoenix.PubSub.
Such as:
defmodule CardComponent do
 ...
 def handle_event("update_title", %{"title" => title}, socket) do
 message = {:updated_card, %{socket.assigns.card | title: title}}
 Phoenix.PubSub.broadcast(MyApp.PubSub, board_topic(socket), message)
 {:noreply, socket}
 end

 defp board_topic(socket) do
 "board:" <> socket.assigns.board_id
 end
end
As long as the parent LiveView subscribes to the board:<ID> topic,
it will receive updates. The advantage of using PubSub is that we get
distributed updates out of the box. Now, if any user connected to the
board changes a card, all other users will see the change.

 LiveComponent as the source of truth

If each card LiveComponent is the source of truth, then the board LiveView
must no longer fetch the card structs from the database. Instead, the board
LiveView must only fetch the card ids, then render each component only by
passing an ID:
<%= for card_id <- @card_ids do %>
 <.live_component module={CardComponent} id={card_id} board_id={@id} />
<% end %>
Now, each CardComponent will load its own card. Of course, doing so
per card could be expensive and lead to N queries, where N is the
number of cards, so we can use the update_many/1 callback to make it
efficient.
Once the card components are started, they can each manage their own
card, without concerning themselves with the parent LiveView.
However, note that components do not have a Phoenix.LiveView.handle_info/2
callback. Therefore, if you want to track distributed changes on a card,
you must have the parent LiveView receive those events and redirect them
to the appropriate card. For example, assuming card updates are sent
to the "board:ID" topic, and that the board LiveView is subscribed to
said topic, one could do:
def handle_info({:updated_card, card}, socket) do
 send_update CardComponent, id: card.id, board_id: socket.assigns.id
 {:noreply, socket}
end
With Phoenix.LiveView.send_update/3, the CardComponent given by id
will be invoked, triggering the update or update_many callback, which will
load the most up to date data from the database.

 Unifying LiveView and LiveComponent communication

In the examples above, we have used send/2 to communicate with LiveView
and send_update/2 to communicate with components. This introduces a problem:
what if you have a component that may be mounted both inside a LiveView
or another component? Given each uses a different API for exchanging data,
this may seem tricky at first, but an elegant solution is to use anonymous
functions as callbacks. Let's see an example.
In the sections above, we wrote the following code in our CardComponent:
def handle_event("update_title", %{"title" => title}, socket) do
 send self(), {:updated_card, %{socket.assigns.card | title: title}}
 {:noreply, socket}
end
The issue with this code is that, if CardComponent is mounted inside another
component, it will still message the LiveView. Not only that, this code may
be hard to maintain because the message sent by the component is defined far
away from the LiveView that will receive it.
Instead let's define a callback that will be invoked by CardComponent:
def handle_event("update_title", %{"title" => title}, socket) do
 socket.assigns.on_card_update.(%{socket.assigns.card | title: title})
 {:noreply, socket}
end
And now when initializing the CardComponent from a LiveView, we may write:
<.live_component
 module={CardComponent}
 card={card}
 id={card.id}
 board_id={@id}
 on_card_update={fn card -> send(self(), {:updated_card, card}) end} />
If initializing it inside another component, one may write:
<.live_component
 module={CardComponent}
 card={card}
 id={card.id}
 board_id={@id}
 on_card_update={fn card -> send_update(@myself, card: card) end} />
The major benefit in both cases is that the parent has explicit control
over the messages it will receive.

 Slots

LiveComponent can also receive slots, in the same way as a Phoenix.Component:
<.live_component module={MyComponent} id={@data.id} >
 <div>Inner content here</div>
</.live_component>
If the LiveComponent defines an update/2, be sure that the socket it returns
includes the :inner_block assign it received.
See the docs for Phoenix.Component for more information.

 Live patches and live redirects

A template rendered inside a component can use <.link patch={...}> and
<.link navigate={...}>. Patches are always handled by the parent LiveView,
as components do not provide handle_params.

 Cost of live components

The internal infrastructure LiveView uses to keep track of live
components is very lightweight. However, be aware that in order to
provide change tracking and to send diffs over the wire, all of the
components' assigns are kept in memory - exactly as it is done in
LiveViews themselves.
Therefore it is your responsibility to keep only the assigns necessary
in each component. For example, avoid passing all of LiveView's assigns
when rendering a component:
<.live_component module={MyComponent} {assigns} />
Instead pass only the keys that you need:
<.live_component module={MyComponent} user={@user} org={@org} />
Luckily, because LiveViews and LiveComponents are in the same process,
they share the data structure representations in memory. For example,
in the code above, the view and the component will share the same copies
of the @user and @org assigns.
You should also avoid using live components to provide abstract DOM
components. As a guideline, a good LiveComponent encapsulates
application concerns and not DOM functionality. For example, if you
have a page that shows products for sale, you can encapsulate the
rendering of each of those products in a component. This component
may have many buttons and events within it. On the opposite side,
do not write a component that is simply encapsulating generic DOM
components. For instance, do not do this:
defmodule MyButton do
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <button class="css-framework-class" phx-click="click">
 <%= @text %>
 </button>
 """
 end

 def handle_event("click", _, socket) do
 _ = socket.assigns.on_click.()
 {:noreply, socket}
 end
end
Instead, it is much simpler to create a function component:
def my_button(%{text: _, click: _} = assigns) do
 ~H"""
 <button class="css-framework-class" phx-click={@click}>
 <%= @text %>
 </button>
 """
end
If you keep components mostly as an application concern with
only the necessary assigns, it is unlikely you will run into
issues related to live components.

 Limitations

Live Components require a single HTML tag at the root. It is not possible
to have components that render only text or multiple tags.

 Summary

 Callbacks

 Phoenix.LiveView - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView behaviour

A LiveView is a process that receives events, updates
its state, and renders updates to a page as diffs.
To get started, see the Welcome guide.
This module provides advanced documentation and features
about using LiveView.

 Life-cycle

A LiveView begins as a regular HTTP request and HTML response,
and then upgrades to a stateful view on client connect,
guaranteeing a regular HTML page even if JavaScript is disabled.
Any time a stateful view changes or updates its socket assigns, it is
automatically re-rendered and the updates are pushed to the client.
Socket assigns are stateful values kept on the server side in
Phoenix.LiveView.Socket. This is different from the common stateless
HTTP pattern of sending the connection state to the client in the form
of a token or cookie and rebuilding the state on the server to service
every request.
You begin by rendering a LiveView typically from your router.
When LiveView is first rendered, the mount/3 callback is invoked
with the current params, the current session and the LiveView socket.
As in a regular request, params contains public data that can be
modified by the user. The session always contains private data set
by the application itself. The mount/3 callback wires up socket
assigns necessary for rendering the view. After mounting, handle_params/3
is invoked so uri and query params are handled. Finally, render/1
is invoked and the HTML is sent as a regular HTML response to the
client.
After rendering the static page, LiveView connects from the client
to the server where stateful views are spawned to push rendered updates
to the browser, and receive client events via phx- bindings. Just like
the first rendering, mount/3, is invoked with params, session,
and socket state. However in the connected client case, a LiveView process
is spawned on the server, runs handle_params/3 again and then pushes
the result of render/1 to the client and continues on for the duration
of the connection. If at any point during the stateful life-cycle a crash
is encountered, or the client connection drops, the client gracefully
reconnects to the server, calling mount/3 and handle_params/3 again.
LiveView also allows attaching hooks to specific life-cycle stages with
attach_hook/4.

 Template collocation

There are two possible ways of rendering content in a LiveView. The first
one is by explicitly defining a render function, which receives assigns
and returns a HEEx template defined with the ~H sigil.
defmodule MyAppWeb.DemoLive do
 use Phoenix.LiveView

 def render(assigns) do
 ~H"""
 Hello world!
 """
 end
end
For larger templates, you can place them in a file in the same directory
and same name as the LiveView. For example, if the file above is placed
at lib/my_app_web/live/demo_live.ex, you can also remove the
render/1 function altogether and put the template code at
lib/my_app_web/live/demo_live.html.heex.

 Async Operations

Performing asynchronous work is common in LiveViews and LiveComponents.
It allows the user to get a working UI quickly while the system fetches some
data in the background or talks to an external service, without blocking the
render or event handling. For async work, you also typically need to handle
the different states of the async operation, such as loading, error, and the
successful result. You also want to catch any errors or exits and translate it
to a meaningful update in the UI rather than crashing the user experience.

 Async assigns

The assign_async/3 function takes the socket, a key or list of keys which will be assigned
asynchronously, and a function. This function will be wrapped in a task by
assign_async, making it easy for you to return the result. This function must
return an {:ok, assigns} or {:error, reason} tuple, where assigns is a map
of the keys passed to assign_async.
If the function returns anything else, an error is raised.
The task is only started when the socket is connected.
For example, let's say we want to async fetch a user's organization from the database,
as well as their profile and rank:
def mount(%{"slug" => slug}, _, socket) do
 {:ok,
 socket
 |> assign(:foo, "bar")
 |> assign_async(:org, fn -> {:ok, %{org: fetch_org!(slug)}} end)
 |> assign_async([:profile, :rank], fn -> {:ok, %{profile: ..., rank: ...}} end)}
end

 Warning

When using async operations it is important to not pass the socket into the function
as it will copy the whole socket struct to the Task process, which can be very expensive.
Instead of:
assign_async(:org, fn -> {:ok, %{org: fetch_org(socket.assigns.slug)}} end)
We should do:
slug = socket.assigns.slug
assign_async(:org, fn -> {:ok, %{org: fetch_org(slug)}} end)
See: https://hexdocs.pm/elixir/process-anti-patterns.html#sending-unnecessary-data

The state of the async operation is stored in the socket assigns within an
Phoenix.LiveView.AsyncResult. It carries the loading and failed states, as
well as the result. For example, if we wanted to show the loading states in
the UI for the :org, our template could conditionally render the states:
<div :if={@org.loading}>Loading organization...</div>
<div :if={org = @org.ok? && @org.result}><%= org.name %> loaded!</div>
The Phoenix.Component.async_result/1 function component can also be used to
declaratively render the different states using slots:
<.async_result :let={org} assign={@org}>
 <:loading>Loading organization...</:loading>
 <:failed :let={_failure}>there was an error loading the organization</:failed>
 <%= org.name %>
</.async_result>

 Arbitrary async operations

Sometimes you need lower level control of asynchronous operations, while
still receiving process isolation and error handling. For this, you can use
start_async/3 and the Phoenix.LiveView.AsyncResult module directly:
def mount(%{"id" => id}, _, socket) do
 {:ok,
 socket
 |> assign(:org, AsyncResult.loading())
 |> start_async(:my_task, fn -> fetch_org!(id) end)}
end

def handle_async(:my_task, {:ok, fetched_org}, socket) do
 %{org: org} = socket.assigns
 {:noreply, assign(socket, :org, AsyncResult.ok(org, fetched_org))}
end

def handle_async(:my_task, {:exit, reason}, socket) do
 %{org: org} = socket.assigns
 {:noreply, assign(socket, :org, AsyncResult.failed(org, {:exit, reason}))}
end
start_async/3 is used to fetch the organization asynchronously. The
handle_async/3 callback is called when the task completes or exits,
with the results wrapped in either {:ok, result} or {:exit, reason}.
The AsyncResult module provides functions to update the state of the
async operation, but you can also assign any value directly to the socket
if you want to handle the state yourself.

 Endpoint configuration

LiveView accepts the following configuration in your endpoint under
the :live_view key:
	:signing_salt (required) - the salt used to sign data sent
to the client

	:hibernate_after (optional) - the idle time in milliseconds allowed in
the LiveView before compressing its own memory and state.
Defaults to 15000ms (15 seconds)

 Summary

 Types

 Phoenix.LiveView.AsyncResult - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.AsyncResult

Provides a data structure for tracking the state of an async assign.
See the Async Operations section of the Phoenix.LiveView docs for more information.

 Fields

	:ok? - When true, indicates the :result has been set successfully at least once.
	:loading - The current loading state
	:failed - The current failed state
	:result - The successful result of the async task

 Summary

 Functions

 Phoenix.LiveView.Controller - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.Controller

Helpers for rendering LiveViews from a controller.

 Summary

 Functions

 Phoenix.LiveView.JS - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.JS

Provides commands for executing JavaScript utility operations on the client.
JS commands support a variety of utility operations for common client-side
needs, such as adding or removing CSS classes, setting or removing tag attributes,
showing or hiding content, and transitioning in and out with animations.
While these operations can be accomplished via client-side hooks,
JS commands are DOM-patch aware, so operations applied
by the JS APIs will stick to elements across patches from the server.
In addition to purely client-side utilities, the JS commands include a
rich push API, for extending the default phx- binding pushes with
options to customize targets, loading states, and additional payload values.

 Client Utility Commands

The following utilities are included:
	add_class - Add classes to elements, with optional transitions
	remove_class - Remove classes from elements, with optional transitions
	toggle_class - Sets or removes classes from elements, with optional transitions
	set_attribute - Set an attribute on elements
	remove_attribute - Remove an attribute from elements
	toggle_attribute - Sets or removes element attribute based on attribute presence.
	show - Show elements, with optional transitions
	hide - Hide elements, with optional transitions
	toggle - Shows or hides elements based on visibility, with optional transitions
	transition - Apply a temporary transition to elements for animations
	dispatch - Dispatch a DOM event to elements

For example, the following modal component can be shown or hidden on the
client without a trip to the server:
alias Phoenix.LiveView.JS

def hide_modal(js \\ %JS{}) do
 js
 |> JS.hide(transition: "fade-out", to: "#modal")
 |> JS.hide(transition: "fade-out-scale", to: "#modal-content")
end

def modal(assigns) do
 ~H"""
 <div id="modal" class="phx-modal" phx-remove={hide_modal()}>
 <div
 id="modal-content"
 class="phx-modal-content"
 phx-click-away={hide_modal()}
 phx-window-keydown={hide_modal()}
 phx-key="escape"
 >
 <button class="phx-modal-close" phx-click={hide_modal()}>✖</button>
 <p><%= @text %></p>
 </div>
 </div>
 """
end

 Enhanced push events

The push/1 command allows you to extend the built-in pushed event handling
when a phx- event is pushed to the server. For example, you may wish to
target a specific component, specify additional payload values to include
with the event, apply loading states to external elements, etc. For example,
given this basic phx-click event:
<button phx-click="inc">+</button>
Imagine you need to target your current component, and apply a loading state
to the parent container while the client awaits the server acknowledgement:
alias Phoenix.LiveView.JS

<button phx-click={JS.push("inc", loading: ".thermo", target: @myself)}>+</button>
Push commands also compose with all other utilities. For example,
to add a class when pushing:
<button phx-click={
 JS.push("inc", loading: ".thermo", target: @myself)
 |> JS.add_class("warmer", to: ".thermo")
}>+</button>
Any phx-value-* attributes will also be included in the payload, their
values will be overwritten by values given directly to push/1. Any
phx-target attribute will also be used, and overwritten.
<button
 phx-click={JS.push("inc", value: %{limit: 40})}
 phx-value-room="bedroom"
 phx-value-limit="this value will be 40"
 phx-target={@myself}
>+</button>

 Custom JS events with JS.dispatch/1 and window.addEventListener

dispatch/1 can be used to dispatch custom JavaScript events to
elements. For example, you can use JS.dispatch("click", to: "#foo"),
to dispatch a click event to an element.
This also means you can augment your elements with custom events,
by using JavaScript's window.addEventListener and invoking them
with dispatch/1. For example, imagine you want to provide
a copy-to-clipboard functionality in your application. You can
add a custom event for it:
window.addEventListener("my_app:clipcopy", (event) => {
 if ("clipboard" in navigator) {
 const text = event.target.textContent;
 navigator.clipboard.writeText(text);
 } else {
 alert("Sorry, your browser does not support clipboard copy.");
 }
});
Now you can have a button like this:
<button phx-click={JS.dispatch("my_app:clipcopy", to: "#element-with-text-to-copy")}>
 Copy content
</button>
The combination of dispatch/1 with window.addEventListener is
a powerful mechanism to increase the amount of actions you can trigger
client-side from your LiveView code.
You can also use window.addEventListener to listen to events pushed
from the server. You can learn more in our JS interoperability guide.

 Summary

 Types

 Phoenix.LiveView.Router - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.Router

Provides LiveView routing for Phoenix routers.

 Summary

 Functions

 Phoenix.LiveViewTest - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveViewTest

Conveniences for testing function components as well as
LiveViews and LiveComponents.

 Testing function components

There are two mechanisms for testing function components. Imagine the
following component:
def greet(assigns) do
 ~H"""
 <div>Hello, <%= @name %>!</div>
 """
end
You can test it by using render_component/3, passing the function
reference to the component as first argument:
import Phoenix.LiveViewTest

test "greets" do
 assert render_component(&MyComponents.greet/1, name: "Mary") ==
 "<div>Hello, Mary!</div>"
end
However, for complex components, often the simplest way to test them
is by using the ~H sigil itself:
import Phoenix.Component
import Phoenix.LiveViewTest

test "greets" do
 assigns = %{}
 assert rendered_to_string(~H"""
 <MyComponents.greet name="Mary" />
 """) ==
 "<div>Hello, Mary!</div>"
end
The difference is that we use rendered_to_string/1 to convert the rendered
template to a string for testing.

 Testing LiveViews and LiveComponents

In LiveComponents and LiveView tests, we interact with views
via process communication in substitution of a browser.
Like a browser, our test process receives messages about the
rendered updates from the view which can be asserted against
to test the life-cycle and behavior of LiveViews and their
children.

 Testing LiveViews

The life-cycle of a LiveView as outlined in the Phoenix.LiveView
docs details how a view starts as a stateless HTML render in a disconnected
socket state. Once the browser receives the HTML, it connects to the
server and a new LiveView process is started, remounted in a connected
socket state, and the view continues statefully. The LiveView test functions
support testing both disconnected and connected mounts separately, for example:
import Plug.Conn
import Phoenix.ConnTest
import Phoenix.LiveViewTest
@endpoint MyEndpoint

test "disconnected and connected mount", %{conn: conn} do
 conn = get(conn, "/my-path")
 assert html_response(conn, 200) =~ "<h1>My Disconnected View</h1>"

 {:ok, view, html} = live(conn)
end

test "redirected mount", %{conn: conn} do
 assert {:error, {:redirect, %{to: "/somewhere"}}} = live(conn, "my-path")
end
Here, we start by using the familiar Phoenix.ConnTest function, get/2 to
test the regular HTTP GET request which invokes mount with a disconnected socket.
Next, live/1 is called with our sent connection to mount the view in a connected
state, which starts our stateful LiveView process.
In general, it's often more convenient to test the mounting of a view
in a single step, provided you don't need the result of the stateless HTTP
render. This is done with a single call to live/2, which performs the
get step for us:
test "connected mount", %{conn: conn} do
 {:ok, _view, html} = live(conn, "/my-path")
 assert html =~ "<h1>My Connected View</h1>"
end

 Testing Events

The browser can send a variety of events to a LiveView via phx- bindings,
which are sent to the handle_event/3 callback. To test events sent by the
browser and assert on the rendered side effect of the event, use the
render_* functions:
	render_click/1 - sends a phx-click event and value, returning
the rendered result of the handle_event/3 callback.

	render_focus/2 - sends a phx-focus event and value, returning
the rendered result of the handle_event/3 callback.

	render_blur/1 - sends a phx-blur event and value, returning
the rendered result of the handle_event/3 callback.

	render_submit/1 - sends a form phx-submit event and value, returning
the rendered result of the handle_event/3 callback.

	render_change/1 - sends a form phx-change event and value, returning
the rendered result of the handle_event/3 callback.

	render_keydown/1 - sends a form phx-keydown event and value, returning
the rendered result of the handle_event/3 callback.

	render_keyup/1 - sends a form phx-keyup event and value, returning
the rendered result of the handle_event/3 callback.

	render_hook/3 - sends a hook event and value, returning
the rendered result of the handle_event/3 callback.

For example:
{:ok, view, _html} = live(conn, "/thermo")

assert view
 |> element("button#inc")
 |> render_click() =~ "The temperature is: 31℉"
In the example above, we are looking for a particular element on the page
and triggering its phx-click event. LiveView takes care of making sure the
element has a phx-click and automatically sends its values to the server.
You can also bypass the element lookup and directly trigger the LiveView
event in most functions:
assert render_click(view, :inc, %{}) =~ "The temperature is: 31℉"
The element style is preferred as much as possible, as it helps LiveView
perform validations and ensure the events in the HTML actually matches the
event names on the server.

 Testing regular messages

LiveViews are GenServer's under the hood, and can send and receive messages
just like any other server. To test the side effects of sending or receiving
messages, simply message the view and use the render function to test the
result:
send(view.pid, {:set_temp, 50})
assert render(view) =~ "The temperature is: 50℉"

 Testing LiveComponents

LiveComponents can be tested in two ways. One way is to use the same
render_component/2 function as function components. This will mount
the LiveComponent and render it once, without testing any of its events:
assert render_component(MyComponent, id: 123, user: %User{}) =~
 "some markup in component"
However, if you want to test how components are mounted by a LiveView
and interact with DOM events, you must use the regular live/2 macro
to build the LiveView with the component and then scope events by
passing the view and a DOM selector in a list:
{:ok, view, html} = live(conn, "/users")
html = view |> element("#user-13 a", "Delete") |> render_click()
refute html =~ "user-13"
refute view |> element("#user-13") |> has_element?()
In the example above, LiveView will lookup for an element with
ID=user-13 and retrieve its phx-target. If phx-target points
to a component, that will be the component used, otherwise it will
fallback to the view.

 Summary

 Functions

 Phoenix.LiveView.HTMLFormatter - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.HTMLFormatter

Format HEEx templates from .heex files or ~H sigils.
This is a mix format plugin.
Note: The HEEx HTML Formatter requires Elixir v1.13.4 or later.

 Setup

Add it as plugin to your .formatter.exs file and make sure to put
theheex extension in the inputs option.
[
 plugins: [Phoenix.LiveView.HTMLFormatter],
 inputs: ["*.{heex,ex,exs}", "priv/*/seeds.exs", "{config,lib,test}/**/*.{heex,ex,exs}"],
 # ...
]

 For umbrella projects

In umbrella projects you must also change two files at the umbrella root,
add :phoenix_live_view to your deps in the mix.exs file
and add plugins: [Phoenix.LiveView.HTMLFormatter] in the .formatter.exs file.
This is because the formatter does not attempt to load the dependencies of
all children applications.

 Editor support

Most editors that support mix format integration should automatically format
.heex and ~H templates. Other editors may require custom integration or
even provide additional functionality. Here are some reference posts:
	Formatting HEEx templates in VS Code

 Options

	:line_length - The Elixir formatter defaults to a maximum line length
of 98 characters, which can be overwritten with the :line_length option
in your .formatter.exs file.

	:heex_line_length - change the line length only for the HEEx formatter.
[
 # ...omitted
 heex_line_length: 300
]

 Formatting

This formatter tries to be as consistent as possible with the Elixir formatter.
Given HTML like this:
 <section><h1> <%= @user.name %></h1></section>
It will be formatted as:
<section>
 <h1><%= @user.name %></h1>
</section>
A block element will go to the next line, while inline elements will be kept in the current line
as long as they fit within the configured line length.
The following links list all block and inline elements.
	https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements#elements
	https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elements#list_of_inline_elements

It will also keep inline elements in their own lines if you intentionally write them this way:
<section>
 <h1>
 <%= @user.name %>
 </h1>
</section>
This formatter will place all attributes on their own lines when they do not all fit in the
current line. Therefore this:
<section id="user-section-id" class="sm:focus:block flex w-full p-3" phx-click="send-event">
 <p>Hi</p>
</section>
Will be formatted to:
<section
 id="user-section-id"
 class="sm:focus:block flex w-full p-3"
 phx-click="send-event"
>
 <p>Hi</p>
</section>
This formatter does not format Elixir expressions with do...end.
The content within it will be formatted accordingly though. Therefore, the given
input:
<%= live_redirect(
 to: "/my/path",
 class: "my class"
) do %>
 My Link
<% end %>
Will be formatted to
<%= live_redirect(
 to: "/my/path",
 class: "my class"
) do %>
 My Link
<% end %>
Note that only the text My Link has been formatted.

 Intentional new lines

The formatter will keep intentional new lines. However, the formatter will
always keep a maximum of one line break in case you have multiple ones:
<p>
 text

 text
</p>
Will be formatted to:
<p>
 text

 text
</p>

 Inline elements

We don't format inline elements when there is a text without whitespace before
or after the element. Otherwise it would compromise what is rendered adding
an extra whitespace.
This is the list of inline elements:
https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elements#list_of_inline_elements

 Skip formatting

In case you don't want part of your HTML to be automatically formatted.
You can use the special phx-no-format attribute so that the formatter will
skip the element block. Note that this attribute will not be rendered.
Therefore:
<.textarea phx-no-format>My content</.textarea>
Will be kept as is your code editor, but rendered as:
<textarea>My content</textarea>

 Comments

Inline comments <%# comment %> are deprecated and the formatter will discard them
silently from templates. You must change them to the multi-line comment
<%!-- comment --%> on Elixir v1.14+ or introduce a space between <% and #,
such as <% # comment %>.

 Summary

 Functions

 Phoenix.LiveView.Logger - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.Logger

Instrumenter to handle logging of Phoenix.LiveView and Phoenix.LiveComponent life-cycle events.

 Installation

The logger is installed automatically when Live View starts.
By default, the log level is set to :debug.

 Module configuration

The log level can be overridden for an individual Live View module:
use Phoenix.LiveView, log: :debug
To disable logging for an individual Live View module:
use Phoenix.LiveView, log: false

 Telemetry

The following Phoenix.LiveView and Phoenix.LiveComponent events are logged:
	[:phoenix, :live_view, :mount, :start]
	[:phoenix, :live_view, :mount, :stop]
	[:phoenix, :live_view, :handle_params, :start]
	[:phoenix, :live_view, :handle_params, :stop]
	[:phoenix, :live_view, :handle_event, :start]
	[:phoenix, :live_view, :handle_event, :stop]
	[:phoenix, :live_component, :handle_event, :start]
	[:phoenix, :live_component, :handle_event, :stop]

See the Telemetry guide for more information.

 Parameter filtering

If enabled, Phoenix.LiveView.Logger will filter parameters based on the configuration of Phoenix.Logger.

 Phoenix.LiveView.Socket - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.Socket

The LiveView socket for Phoenix Endpoints.
This is typically mounted directly in your endpoint.
socket "/live", Phoenix.LiveView.Socket,
 websocket: [connect_info: [session: @session_options]]
To share an underlying transport connection between regular
Phoenix channels and LiveView processes, use Phoenix.LiveView.Socket
from your own MyAppWeb.UserSocket module.
Next, declare your channel definitions and optional connect/3, and
id/1 callbacks to handle your channel specific needs, then mount
your own socket in your endpoint:
socket "/live", MyAppWeb.UserSocket,
 websocket: [connect_info: [session: @session_options]]
If you require session options to be set at runtime, you can use
an MFA tuple. The function it designates must return a keyword list.
socket "/live", MyAppWeb.UserSocket,
 websocket: [connect_info: [session: {__MODULE__, :runtime_opts, []}]]

...

def runtime_opts() do
 Keyword.put(@session_options, :domain, host())
end

 Summary

 Types

 Phoenix.LiveViewTest.Element - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveViewTest.Element

The struct returned by Phoenix.LiveViewTest.element/3.
The following public fields represent the element:
	selector - The query selector
	text_filter - The text to further filter the element

See the Phoenix.LiveViewTest documentation for usage.

 Phoenix.LiveViewTest.Upload - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveViewTest.Upload

The struct returned by Phoenix.LiveViewTest.file_input/4.
The following public fields represent the element:
	selector - The query selector
	entries - The list of selected file entries

See the Phoenix.LiveViewTest documentation for usage.

 Phoenix.LiveViewTest.View - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveViewTest.View

The struct for testing LiveViews.
The following public fields represent the LiveView:
	id - The DOM id of the LiveView
	module - The module of the running LiveView
	pid - The Pid of the running LiveView
	endpoint - The endpoint for the LiveView
	target - The target to scope events to

See the Phoenix.LiveViewTest documentation for usage.

 Phoenix.LiveView.UploadConfig - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.UploadConfig

The struct representing an upload.

 Summary

 Types

 Phoenix.LiveView.UploadEntry - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.UploadEntry

The struct representing an upload entry.

 Summary

 Types

 Phoenix.LiveView.UploadWriter - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.UploadWriter behaviour

Provide a behavior for writing uploaded chunks to a final destination.
By default, uploads are written to a temporary file on the server and
consumed by the LiveView by reading the temporary file or copying it to
durable location. Some usecases require custom handling of the uploaded
chunks, such as streaming a user's upload to another server. In these cases,
we don't want the chunks to be written to disk since we only need to forward
them on.
Note: Upload writers run inside the channel uploader process, so
any blocking work will block the channel errors will crash the channel process.
Custom implementations of Phoenix.LiveView.UploadWriter can be passed to
allow_upload/3. To initialize the writer with options, define a 3-arity function
that returns a tuple of {writer, writer_opts}. For example imagine
an upload writer that logs the chunk sizes and tracks the total bytes sent by the
client:
socket
|> allow_upload(:avatar,
 accept: :any,
 writer: fn _name, _entry, _socket -> {EchoWriter, level: :debug} end
)
And such an EchoWriter could look like this:
defmodule EchoWriter do
 @behaviour Phoenix.LiveView.UploadWriter

 require Logger

 @impl true
 def init(opts) do
 {:ok, %{total: 0, level: Keyword.fetch!(opts, :level)}}
 end

 @impl true
 def meta(state), do: %{level: state.level}

 @impl true
 def write_chunk(data, state) do
 size = byte_size(data)
 Logger.log(state.level, "received chunk of #{size} bytes")
 {:ok, %{state | total: state.total + size}}
 end

 @impl true
 def close(state, reason) do
 Logger.log(state.level, "closing upload after #{state.total} bytes}, #{inspect(reason)}")
 {:ok, state}
 end
end
When the LiveView consumes the uploaded entry, it will receive the %{level: ...}
returned from the meta callback. This allows the writer to keep state as it handles
chunks to be later relayed to the LiveView when consumed.

 Close reasons

The close/2 callback is called when the upload is complete or cancelled. The following
values can be passed:
	:done - The client sent all expected chunks and the upload is awaiting consumption
	:cancel - The upload was canceled, either by the server or the client navigating away.
	{:error, reason} - The upload was canceled due to an error returned from write_chunk/2.
For example, if If write_chunk/2 returns {:error, :enoent, state}, the upload will be cancelled
and close/2 will be called with the reason {:error, :enoent}.

 Summary

 Callbacks

 Phoenix.LiveComponent.CID - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveComponent.CID

The struct representing an internal unique reference to the component instance,
available as the @myself assign in live components.
Read more about the uses of @myself in the Phoenix.LiveComponent docs.

 Phoenix.LiveView.Component - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.Component

The struct returned by components in .heex templates.
This component is never meant to be output directly
into the template. It should always be handled by
the diffing algorithm.

 Summary

 Types

 Phoenix.LiveView.Comprehension - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.Comprehension

The struct returned by for-comprehensions in .heex templates.
See a description about its fields and use cases
in Phoenix.LiveView.Engine docs.

 Summary

 Types

 Phoenix.LiveView.Engine - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.Engine

An EEx template engine that tracks changes.
This is often used by Phoenix.LiveView.TagEngine which also adds
HTML validation. In the documentation below, we will explain how it
works internally. For user-facing documentation, see Phoenix.LiveView.

 Phoenix.LiveView.Rendered

Whenever you render a live template, it returns a
Phoenix.LiveView.Rendered structure. This structure has
three fields: :static, :dynamic and :fingerprint.
The :static field is a list of literal strings. This
allows the Elixir compiler to optimize this list and avoid
allocating its strings on every render.
The :dynamic field contains a function that takes a boolean argument
(see "Tracking changes" below), and returns a list of dynamic content.
Each element in the list is either one of:
	iodata - which is the dynamic content
	nil - the dynamic content did not change
	another Phoenix.LiveView.Rendered struct, see "Nesting and fingerprinting" below
	a Phoenix.LiveView.Comprehension struct, see "Comprehensions" below
	a Phoenix.LiveView.Component struct, see "Component" below

When you render a live template, you can convert the
rendered structure to iodata by alternating the static
and dynamic fields, always starting with a static entry
followed by a dynamic entry. The last entry will always
be static too. So the following structure:
%Phoenix.LiveView.Rendered{
 static: ["foo", "bar", "baz"],
 dynamic: fn track_changes? -> ["left", "right"] end
}
Results in the following content to be sent over the wire
as iodata:
["foo", "left", "bar", "right", "baz"]
This is also what calling Phoenix.HTML.Safe.to_iodata/1
with a Phoenix.LiveView.Rendered structure returns.
Of course, the benefit of live templates is exactly
that you do not need to send both static and dynamic
segments every time. So let's talk about tracking changes.

 Tracking changes

By default, a live template does not track changes.
Change tracking can be enabled by including a changed
map in the assigns with the key __changed__ and passing
true to the dynamic parts. The map should contain
the name of any changed field as key and the boolean
true as value. If a field is not listed in __changed__,
then it is always considered unchanged.
If a field is unchanged and live believes a dynamic
expression no longer needs to be computed, its value
in the dynamic list will be nil. This information
can be leveraged to avoid sending data to the client.

 Nesting and fingerprinting

Phoenix.LiveView also tracks changes across live
templates. Therefore, if your view has this:
<%= render "form.html", assigns %>
Phoenix will be able to track what is static and dynamic
across templates, as well as what changed. A rendered
nested live template will appear in the dynamic
list as another Phoenix.LiveView.Rendered structure,
which must be handled recursively.
However, because the rendering of live templates can
be dynamic in itself, it is important to distinguish
which live template was rendered. For example,
imagine this code:
<%= if something?, do: render("one.html", assigns), else: render("other.html", assigns) %>
To solve this, all Phoenix.LiveView.Rendered structs
also contain a fingerprint field that uniquely identifies
it. If the fingerprints are equal, you have the same
template, and therefore it is possible to only transmit
its changes.

 Comprehensions

Another optimization done by live templates is to
track comprehensions. If your code has this:
<%= for point <- @points do %>
 x: <%= point.x %>
 y: <%= point.y %>
<% end %>
Instead of rendering all points with both static and
dynamic parts, it returns a Phoenix.LiveView.Comprehension
struct with the static parts, that are shared across all
points, and a list of dynamics to be interpolated inside
the static parts. If @points is a list with %{x: 1, y: 2}
and %{x: 3, y: 4}, the above expression would return:
%Phoenix.LiveView.Comprehension{
 static: ["\n x: ", "\n y: ", "\n"],
 dynamics: [
 ["1", "2"],
 ["3", "4"]
]
}
This allows live templates to drastically optimize
the data sent by comprehensions, as the static parts
are emitted only once, regardless of the number of items.
The list of dynamics is always a list of iodatas or components,
as we don't perform change tracking inside the comprehensions
themselves. Similarly, comprehensions do not have fingerprints
because they are only optimized at the root, so conditional
evaluation, as the one seen in rendering, is not possible.
The only possible outcome for a dynamic field that returns a
comprehension is nil.

 Components

Live also supports stateful components defined with
Phoenix.LiveComponent. Since they are stateful, they are always
handled lazily by the diff algorithm.

 Phoenix.LiveView.HTMLEngine - Phoenix LiveView v1.0.0-rc.1

Phoenix.LiveView.HTMLEngine

The HTMLEngine that powers .heex templates and the ~H sigil.
It works by adding a HTML parsing and validation layer on top
of Phoenix.LiveView.TagEngine.

 Phoenix.LiveView.Rendered - Phoenix LiveView v1.0.0-rc.1

